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 Portfolio construction is the process of determining asset weights that best 
represent return and risk trade-off

Portfolio Construction
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Portfolio Construction

Optimization
Maximizes a utility 

function, U(P).

Risk Aversion, λ

Risk Model,  Σ

Constraints, Penalties (PN)

Optimal
Portfolio

Portfolio, Universe, Benchmark

Transaction(TC) and other 
Costs 

Forecast Returns, α

U(P) = α - λσp
2 - TC - …

 What if there are errors in the inputs?
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Errors in Expected Return Estimates

 A wealth of research over the years has dealt with errors in expected 
return estimates
 The problem was first described by Barry (1974), Michaud (1989), and Jorion (1992)

 Since then, proposed frameworks to deal with the problem include:
 Black-Litterman

 Robust optimization w/ alpha error estimates

 Bayesian methods / Shrinkage

 But note…
 Kritzman (2006) argues that the return distribution of the presumed optimal portfolio is 

actually similar to the distribution of the truly optimal portfolio. Thus, mean-variance 
optimizers usually turn out to be more robust to small input errors than conventional 
wisdom assumes
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Errors in Risk Model Estimates

 Covariance matrices are also subject to estimation (or sampling) error:
 As with expected returns, any sample covariance matrix contains 

estimation error
 Especially when the number of stocks >> the number of time periods for observed 

returns

 “Error maximization” (Michaud,  1989)
 When the sample covariance matrix is an input to a mean-variance optimizer, it will 

result in ‘extreme’ and under-diversified portfolios
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Errors in Risk Model Estimates

 Some solutions have been proposed
 Michaud (1998) “Resampling”:
 Not based upon an improved estimator of the covariance matrix

 From artificial return data resampled from the observed data, covariance matrices are 
sampled many times and fed into the mean-variance optimizer. 

 The optimal portfolios  which result are then averaged.

 Ledoit and Wolf (2004): 
 Propose an improved estimator of the covariance matrix based on “shrinkage.” 

 Shrinkage pulls the most extreme coefficients towards more central values

 Specifically finds an optimal linear combination of the sample covariance matrix and a 
highly structured estimator, which assumes that the correlation between the returns of 
any two stocks is always the same
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 Sampling error: Covariance matrix is based on a limited number 
of observations 
 Estimating      for     assets over       time periods (T>n)

 Ratios below one represent underforecasting bias thus risk 
forecasts of optimized portfolios are biased low

Sampling Error
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Sampling Error

 If the universe consists of 100 assets and we construct the sample 
covariance matrix  from weekly returns over 5 years of history, the forecast 
variance of an optimized portfolio is roughly 37% of the true variance
 If we expand the universe to 200 stocks, the forecast is only 5% of the true 

variance — a 95% underestimation!
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 Assume that the factor structure is known (i.e., there is no model error) 
and exposures to these factors are known

 We can show that the relevant ratio is now 
 Sampling mainly affects         , a  k×k matrix, which has much fewer 

dimensions than n x n
 With five years of weekly returns, the average bias is less than 3%, 

regardless of the number of assets
 Moreover, the greater proportion of specific risk in the portfolio, the less 

severe the effects of the errors

Factor Model – Structure Helps


Idiosyncratic riskFactor risk

   TX F XΣ = + ∆


F
 not k n

T T
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Simulations: How Bad is the Bias?

 Start with the Barra US Equity Short Term Model (USE3S) as of March 2008
 68 factors in the model

 Assume this is the “true” risk model

 We build two types of risk models over many simulations:
 In each simulation, we generate histories of factor and specific returns (Z and w are 

multivariate standard normal):

 Asset-by-asset covariance matrix: In each simulation run, we build a covariance matrix 
from a history of 200 periods of returns

 Factor-based covariance matrix: In each simulation, we build the factor covariance 
matrix and specific risk matrix separately;  we assume that the asset factor exposures 
are known and need not be estimated 
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Simulations: How Bad is the Bias?

 We run two types of unconstrained, active optimizations:
 Stock selection
 Alphas are unrelated to the model factors

 Factor tilt
 Alphas are a randomly weighted combination of three USE3 style factors

 The weights change with each simulation run

 Universe/Benchmark = the 100 largest capitalization companies in the 
MSCI US Prime Market 750 Index
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 Simulation results for 100 assets:

Simulation Results
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Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Historical 
Asset

Active Variance 24.4 -- 24.5 --

Active Variance 96.7 100.0 92.7 100.0
Factor  83.7 11.4 83.5 37.2
Specific 98.3 88.6 98.1 62.8

Risk Model Risk
Stock Selection

Factor Based

Factor Tilt
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 Simulation results for 100 assets:

 Simulation results for 750 assets:

Simulation Results
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Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Active Variance 97.2 100.0 80.9 100.0
Factor  65.5 2.8 65.4 53.5
Specific 98.1 97.2 98.2 46.5

Risk Model Risk
Stock Selection Factor Tilt

Factor Based

Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Historical 
Asset

Active Variance 24.4 -- 24.5 --

Active Variance 96.7 100.0 92.7 100.0
Factor  83.7 11.4 83.5 37.2
Specific 98.3 88.6 98.1 62.8

Risk Model Risk
Stock Selection

Factor Based

Factor Tilt
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Adding Constraints

 So far, we have been looking at unconstrained optimizations
 What if there are constraints?
 Conventional wisdom: constraints act to limit the error-maximizing behavior of 

optimization

 Consider the case in which a manager constrains J characteristics of an 
(active) portfolio with N assets to be exactly zero by imposing the 
constraints:
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Adding Constraints

 These equality constraints effectively reduce the number of variables in 
the problem, since they enable us to write the optimization problem in 
terms of N-J assets, rather than N, as follows:

 In turn, this generally reduces the forecasting bias
 Since factor risk is 

 When we constrain a factor, say i, we set     

 Effectively drops a variable from the problem

 Moreover, drops it from the factor risk, which is the principal source of forecasting bias 
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Adding Constraints: Simulations

 Rerun simulations:
 Case 1: Constrain all factor exposures to be zero, except for the three factors comprising 

the alpha

 Case 2: Add long-only constraint
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Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Forecast over Truth 
(% )

Ratio of Component to 
Active Variance (% )

Active Variance 98.2 100.0 95.6 100.0
Factor  -- 0.0 93.2 54.2
Specific 98.2 100.0 98.2 45.8

Active Variance 95.9 100.0 89.3 100.0
Factor  84.4 19.7 81.1 52.5
Specific 98.7 80.3 98.5 47.5

Long only 
Active Risk 3%

Risk Model Risk
Stock Selection Factor Tilt

Factor 
Neutral
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Conclusion

 Due to noise in the covariance matrix, portfolio optimization tends to 
produce portfolios for which the risk forecasts are underestimates of the 
true risk
 In the case in which the asset returns have a factor structure, using a 

factor-based covariance matrix mitigates the risk forecast bias significantly
 Furthermore, our analysis reveals that the bias in factor model risk 

forecasts may be significantly less than earlier estimates would suggest
 Finally, we discuss briefly how constraints mitigate the forecast bias
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