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1 Introduction

Understanding volatility dynamics and improving option pricing have long been of

interest to practitioners and academics. It is well-known that the volatility of many

financial assets is time-varying, and an enormous amount of research has been devoted

to studying this feature of financial data. But, there is strong empirical evidence sug-

gesting that return distributions have time-varying skewness and kurtosis as well. For

example, stochastic skewness in risk-neutral return distributions is implied by varia-

tion across time in the slope of the Black-Scholes implied volatility surface. Stochastic

kurtosis is related to variation across time in the curvature of the Black-Scholes im-

plied volatility surface. These are important features of observed option prices and

are only weakly correlated with variation in option-implied volatility. Yet, modelling

efforts that attempt to fit both physical and risk-neutral models simultaneously in a

time-consistent manner typically include only a single state variable, volatility, and

are thus capable of capturing little of the variation in implied skewness and kurto-

sis of returns that is observed in the data. Understanding variation in the shape of

return distributions (and the shape of the implied volatility smile) is important in

many applications, such as hedging and risk management. Any option pricing model

that is unable to explain this feature of the data is clearly deficient.

The objective of this paper is to investigate model characteristics that are con-

sistent with time-varying skewness and kurtosis in return distributions as is observed

empirically in the option market. In particular, we look at models that allow for

time-variation in volatility of volatility and correlation between innovations in prices

and volatility (leverage effect), both of which are able to generate variation in the

shape of return distributions. We find strong evidence in favor of these features un-

der the physical measure. An important aspect of our analysis is that the models are

estimated using returns and implied volatility, but additional information about the

shape of the return distribution embedded in option prices (i.e., under the risk-neutral

measure) is not used in fitting them. By withholding this information from the model

estimation, we are able to use it for diagnostic purposes. Toward this end, we look

at some regressions to examine whether the implied state variables have explanatory

power for option-implied skewness and kurtosis and find strong evidence that they do.

That is, we find that information about the volatility of volatility and leverage effect

extracted from the physical dynamics of returns and volatility has explanatory power

3



for time-variation in the shape of returns distributions implied by option prices under

the risk-neutral measure. This is important because it suggests that variation in the

shape of risk-neutral return distributions (and of the Black-Scholes implied volatility

smile) is not just due, for example, to changes in risk premia, but is associated with

changes in related characteristics of the physical dynamics.

This paper adds to the existing literature on option-implied skewness. Dennis

and Mayhew (2002) investigate the relation between option-implied skewness and firm

characteristics, such as firm size, trading volume, and leverage. Han (2008) finds that

market sentiment has some explanatory power for option-implied skewness. Harvey

and Siddique (2000) look at asset pricing models that incorporate conditional skew-

ness. They find that skewness has significant explanatory power for cross-sectional

variation in expected returns across assets. Xing, Zhang, and Zhao (2007) find that

option-implied skewness may be predictive of future returns. Bollen and Whaley

(2004) look at the effect of net buying pressure in options markets on the shape of

implied volatility smiles.

More closely related to this paper, there has also been work focused on under-

standing the relationship between option-implied skewness and the dynamics of the

underlying asset price process. Das and Sundaram (1999) show that both volatility of

volatility and correlation between the innovations in an asset’s price and its volatility

(leverage effect) affect the shape of the volatility smirk and are thus possible candi-

dates (see also Jones 2003). They show that the size and intensity of jumps in returns

are also possibilities, though mostly affecting option-implied skewness at short terms

to maturities. There has been some work toward implementing these ideas. For exam-

ple, the two-factor stochastic volatility model of Christoffersen, Heston, and Jacobs

(2009) is able to generate time-varying correlation, while Santa-Clara and Yan (2009)

allow the jump intensity to be stochastic. In each of these papers, the authors find

that option pricing performance is significantly improved.

Carr and Wu (2007) propose a stochastic skew model for foreign exchange rates

with positive and negative jumps driven by independent Levy processes. Johnson

(2002) looks at a stochastic volatility model with time-varying correlation between

return and volatility innovations and shows that the model implies time-series vari-

ation in the shape of the implied-volatility smile. Jones (2003) proposes a constant

elasticity of variance model that incorporates a time-varying leverage effect. Harvey
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and Siddique (1999) look at GARCH models that incorporate time-varying skewness.

In this paper, the underlying modelling framework is based on a standard single-

factor stochastic volatility model. Although models of the affine (or affine-jump)

class are often used in work of this kind due to their analytical tractability, these

models have trouble fitting the data (e.g., Jones 2003, Ait-Sahalia and Kimmel 2007,

Christoffersen, Jacobs, and Mimouni 2007). But since the techniques applied in this

paper do not rely upon the analytical tractability of the affine models, we are able

to choose among classes of models based on performance instead. We have found

that log volatility models provide a useful starting point. We allow for contempora-

neous jumps in both returns and volatility. We build on this framework by adding

a regime-switching feature for the parameters corresponding to volatility of volatil-

ity and leverage effect. This idea is motivated by the fact that changes in either of

these two variables, at least under the risk-neutral measure, are capable of generating

variation in the shape of the Black-Scholes implied volatility smirk.

As pointed out by Das and Sundaram (1999), time-varying jump dynamics pro-

vide another possible mechanism for generating variation in the shape of return distri-

butions. Although we tested models including regime-switching in jump parameters,

such models did not turn out to be empirically useful. We do not report the results

for these experiments to keep the presentation manageable.

We make no effort to attach a particular economic interpretation to the regime

states. We regard this modelling framework simply as a convenient way of generating

a flexible family of models that is capable of behavior that captures an important

feature of the data that we are interested in.

The regime-switching framework is useful because it is the simplest possible ap-

proach that incorporates time-variation in the parameters of interest. Our empirical

results demonstrate that it is also sufficient to capture the essential characteristics of

observed behavior that are of interest here. More sophisticated approaches involving

continuous state spaces are of course possible. However, such models require addi-

tional assumptions not needed here regarding the form of the processes describing the

evolution of the states. The analysis is also substantially less transparent.

Our empirical work uses S&P 500 index (SPX) option data. Option-implied

volatility, skewness, and kurtosis are estimated using the model-free approach of

Bakshi, Kapadia, and Madan (2003). Figure 1 shows the time-series plots of option-
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implied volatility, skewness, and kurtosis. Figure 2 shows the scatter plots of option-

implied skewness and kurtosis versus volatility. It is evident from these plots that

there are substantial and persistent variations in skewness and kurtosis, and that

these variations are weakly correlated with the level of volatility. Models with only a

single volatility state are hard to reconcile with the empirical features of these data.

In particular, any option pricing model with only a single state variable implies that

skewness and kurtosis are perfectly correlated with volatility, in stark contrast to the

data.

Jones (2003) looks at a CEV model with different elasticity parameters for the

parts of volatility innovations that are correlated/uncorrelated with price innova-

tions. In this model, the strength of the leverage effect depends upon the level of the

volatility state. Jones argues that this helps to capture time variation in the shape of

return distributions. Pan (2002) includes a time-varying jump risk premium that is

proportional to the level of the volatility state. Both papers find that option-pricing

performance is significantly improved. But, these papers include only a single state

variable, volatility, which means that they are able to capture only a small part of

the time variation in option-implied skewness and kurtosis.

One approach toward resolving this shortcoming is to recalibrate the model pa-

rameters on a daily basis using the observed panel of option prices with varying

moneyness and time to maturity (e.g., Rubinstein 1994; Bakshi, Cao, and Chen

1997; Bates 2000; Duffie, Pan, and Singleton 2000). However, this approach is not

time-consistent and does not provide much help in understanding the dynamics of

the underlying asset price nor the relationship between these dynamics and observed

option prices.

An alternative approach is to include in the model an additional stochastic factor

that is related to skewness and kurtosis (e.g., Christoffersen, Heston, and Jacobs 2009

and Santa-Clara and Yan 2009). This is the basic approach used in this paper. But,

unlike Christoffersen, Heston, and Jacobs (2009) and Santa-Clara and Yan (2009),

we do not use cross-sectional option prices or option-implied skewness and kurtosis

in the estimation step. Given observations of option-implied volatility and skewness

(or kurtosis), it is generally easy for any two-factor model to match both exactly,

even if the model is badly misspecified. With this procedure, however, it is unclear

if the implied dynamics of the states are actually present under the physical measure
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or are just artifacts of forcing the model to match the shape of the volatility smile.

Differences between physical and risk-neutral dynamics are typically attributed to

risk-premia. But, if the model is misspecified, these are also likely to be artifacts.

Our study takes a somewhat different tack. While we match option-implied

volatility, we do not force the model to match option-implied skewness or kurtosis

exactly. We also do not look for risk premia which cause the models to fit the shape

of the implied volatility smirk on average. Rather, we fit the models using only

information from returns and implied volatility. By then regressing option-implied

skewness and kurtosis on the implied states (and some control variables), we are able

to draw useful conclusions about the extent to which the implied states are informative

about variation across time in the shape of the risk-neutral return distribution.

We also examine two different specifications for the jump structure, depending on

whether jumps are scaled by the volatility state or not. The unscaled jump models

(UJ) assume that jumps innovations are identically distributed across time. This

form has been commonly used in the existing literature (e.g., Eraker, Johannes, and

Polson 2003; Eraker 2004; Broadie, Chernov, and Johannes 2007). In the scaled jump

models, on the other hand, jumps are larger on average when the volatility state is

higher. Such models are potentially able to generate dynamics that more realistically

reflect the data. Our results indicate a strong preference for the scaled jump form.

We do not demonstrate potential improvements in fitting observed option prices

by using models such as those proposed in this paper. If one were actually interested

in fitting observed option prices, it would be desirable to use the full panel of option

prices observed each day to back out implied states. The model would be able to

match perfectly on a day-by-day basis both the volatility and skewness of the risk-

neutral distribution implied by observed option prices (corresponding roughly to the

level and slope of the Black-Scholes implied-volatility smile), with an accompanying

improvement in fit to the option prices themselves. But, as described above, this is

not the purpose of the paper.

To summarize, the analysis is comprised of two main parts. First, we fit the

models using SPX prices and option-implied volatility. We compare models based on

log likelihoods and other diagnostics. The second step involves testing the explana-

tory power of the implied regime states for option-implied skewness and kurtosis.

Critically, information about the shape of the risk-neutral distribution is not used in
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the estimation step, which makes this diagnostic useful.

Regarding the first step of the analysis (model estimation), including jumps in

the model (whether scaled or unscaled) provides a huge improvement relative to

the base model with no jumps. The log likelihood increases by over 300 points.

Other diagnostics of model fit are also greatly improved. The models with scaled

jumps heavily dominate those with unscaled jumps. For the models without regime-

switching, the difference is over 40 points in log likelihood.

Including the regime-switching feature provides additional improvements that

are highly significant. The model with regime switching in volatility of volatility and

scaled jumps provides an increase of 110 point in log likelihood relative to the model

without regime switching, with improvements in the other diagnostics of model fit

as well. The regime switching model nests the model without regime switching and

includes four additional parameters. A standard likelihood ratio test indicates that

a difference of 110 points in log likelihood corresponds to a p-value of around 10−22.

These results provide overwhelming evidence against models in which volatility of

volatility and leverage effect are constant.

In the second step of the analysis, regressions testing whether the implied states

have explanatory power for option-implied skewness and kurtosis are also decisive.

The slope coefficients are strongly significant and in the expected directions. Option-

implied skewness tends to be more negative when volatility of volatility is high or

the leverage effect is more pronounced (more negative correlation between price and

volatility innovations). Option-implied kurtosis tends to be more positive when

volatility of volatility is high or the leverage effect is more pronounced. We also

include several control variables that could be related to variation in the shape of

return distributions. The VIX index is included to control for correlation between

option-implied volatility and option-implied skewness and kurtosis. We also include a

nonparametric measure of the variance risk premium (VRP) based on the difference

between the VIX index and realized volatility (Bollerslev, Gibson, and Zhou 2009,

Carr and Wu 2009). Finally, the jump variation (JV) measure of Barndorff-Nielsen

and Shephard (2004) is used as a proxy for jump risk. Our regression results are

robust to inclusion of these control variables.

As in the estimation step, models with scaled jumps always dominate models

with unscaled jumps. For option-implied skewness, the regression on the three control
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variables alone gives an adjusted R2 of only 9.3%. VIX and VRP are significant, but

not JV. The best regression model includes both volatility of volatility and leverage

states (in addition to the control variables). This model has an R2 of over 32%

and slope coefficients for the states have t-statistics with absolute value greater than

11 (corresponding to p-values of less than 10−27). Results for the implied kurtosis

regressions are qualitatively similar (though weaker).

The remainder of the paper is organized as follows. Section 2 describes the models

under consideration. In Section 3, we develop the estimation strategy, focusing on

how to deal with the unobservable volatility and regime states. Model estimates and

diagnostics are presented in Section 4. Section 5 investigates the explanatory power of

implied regime states from the models for risk-neutral implied-skewness and kurtosis.

And, Section 6 concludes.

2 Models

The modeling framework used in this paper is based on a standard stochastic volatility

model, variants of which have appeared frequently in the existing literature. We

simultaneously fit both physical and risk-neutral models. Although affine models are

often used in work of this kind due to their analytical tractability, these models have

trouble fitting the data. However, since the techniques applied in this paper do not

rely upon the nice analytical features of the affine models, we are able to consider

other possibilities. We have found that log volatility models work well and use these

as the basis for our modelling framework.

A large body of literature documents the significance of jumps in returns and

volatilities. Bakshi, Cao, and Chen (1997), Bates (2000), Pan (2002), and Andersen,

Benzoni, and Lund (2002) find jumps in returns to be important. Duffie, Pan, and

Singleton (2000), Eraker, Johannes, and Polson (2003), Eraker (2004), and Broadie,

Chernov, and Johannes (2007) argue in favor of including jumps in volatility as well.

In light of this evidence, we allow for jumps in both prices and volatility.

Given a probability space (Ω,F ,P) and information filtration {Ft}, the ex-
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dividend stock price, xt, is assumed to evolve as

dxt/xt =
[
µ− µ1Jtλ1

]
dt+ exp(vt/2)dW1t + (eJ1t − 1)dN1t

dvt =
[
k(v − vt)− µ2Jtλ1

]
dt+ σ(st)dW2t + J2tdN1t

dst = (1− 2st)dN2t

(1)

where vt and st are the volatility state and the regime state, respectively. The regime

state is either 0 or 1. W1t and W2t are standard Brownian motions with regime-

dependent correlation ρ(st). N1t and N2t are Poisson processes with intensity λ1 and

λ2(st), respectively.

We consider two different forms for the jump structure, depending upon whether

jumps are scaled by the same factor as the Brownian motion or unscaled. The unscaled

model (UJ) assumes that jump innovations are identically distributed across time. In

this case, the jumps are bivariate normal with J1t ∼ N (µ1J , σ
2
1J), J2t ∼ N (µ2J , σ

2
2J),

and corr(J1t, J2t) = ρJ . This form has been commonly used in the existing litera-

ture (e.g., Eraker, Johannes, and Polson 2003; Eraker 2004; Broadie, Chernov, and

Johannes 2007). In contrast, the scaled model (SJ) assumes that jumps scale in pro-

portion to the volatility of the diffusion component of the process. That is, J1t and

J2t are bivariate normal with J1t/ exp(vt/2) ∼ N (µ1J , σ
2
1J), J2t/σ(st) ∼ N (µ2J , σ

2
2J),

and corr(J1t, J2t) = ρJ . By generating larger jumps when volatility is higher, the SJ

model is potentially capable of providing more realistic dynamics (this hypothesis is

indeed confirmed in the empirical section). Let µ1Jt = E(eJ1t − 1) and µ2Jt = E(J2t)

denote the mean jump sizes (note that these are time-varying for the SJ models).

The regime-dependent parameters, σ and ρ, allow for variation across time in

the volatility of volatility and leverage effect. These are the mechanisms by which it

is possible to generate time-varying skewness and kurtosis. The regime-dependence

of λ2 lets the regimes differ in persistence.

For simplicity, we only look at models with two possible regimes, although ex-

tending our techniques to more regimes is straightforward (at the cost of more free

parameters to estimate). The regime state process is the continuous-time analog of

a discrete-time Markov switching model in which the probability of switching from

state s to state 1 − s is λ2(s)∆t (s = 0, 1). If the discretization interval is short

relative to the intensity of the Poisson process, the discrete-time approximation will
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be good. This is the case for all of the models estimated in this paper.

It is often useful to transform the model into log prices, y(t) = log(xt),

dyt =
[
µ− µ1Jtλ1 −

1
2

exp(vt)
]
dt+ exp(vt/2)dW1t + J1tdN1t

dvt =
[
k(v − vt)− µ2Jtλ1

]
dt+ σ(st)dW2t + J2tdN1t

dst = (1− 2st)dN2t.

(2)

While the dynamics of the underlying asset are described by the above model,

options are priced according to a risk-neutral measure, Q. We assume that under this

measure the model takes the form

dyt =
[
rt − qt − µ1Jtλ1 −

1
2

exp(vt)
]
dt+ exp(vt/2)dWQ

1t + JQ
1tdN

Q
1t

dvt =
[
k(v − vt)− η(st)vt − µ2Jtλ1

]
dt+ σ(st)dW

Q
2t + JQ

2tdN
Q
1t

dst = (1− 2st)dN
Q
2t

(3)

where rt and qt denote the risk-free rate and the dividend rate, respectively. WQ
1t and

WQ
2t are standard Brownian motions with regime-dependent correlation ρ(st) under

the risk-neutral measure. The return risk premium is µ− (rt − qt).

Jump parameters are the same under physical and risk neutral measures. In

other words, we do not attempt to identify any jump risk premia. This is because the

models and data used in this paper have limited power to separately identify jump risk

premium and diffusive volatility premia. As is well-known, option-implied volatility

provides a biased estimate of the volatility of observed returns. Jump risk and diffu-

sive volatility premia are two possible mechanisms for accounting for this difference.

The effects of these can be disentangled either by looking at cross-sections of option

prices across moneyness or by looking at options with varying times to maturity (see

Pan 2002 for a detailed discussion of this issue). Studying the characteristics of jump

risk premia is certainly an interesting issue, and has been looked at by Pan (2002) and

Broadie, Chernov, and Johannes (2007) among others. However, it is not the topic

of this paper, and our models and data choices were made to address other issues.

We identify a volatility risk premium, η, which accounts for the difference between

physical and option-implied volatility, absorbing any potential jump risk premium

as well. We could equally well have set η equal to zero and introduced a jump risk
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premium instead (this is the aproach taken by Pan 2002). It would make essentially

no difference in any of the results of the paper.

The market variance risk premium is generally found to be negative (e.g., Bakshi

and Kapadia 2003; Coval and Shumway 2001; Carr and Wu 2009). This finding can be

understood in the framework of classic capital asset pricing theory (e.g., Heston 1993;

Bakshi and Kapadia 2003; Bollerslev, Gibson, and Zhou 2009). But, according to the-

ory, the variance risk premium should be dependent on the volatility of volatility and

the leverage effect (correlation between returns and changes in volatility state). For

example, the variance risk premium should be more negatively priced as the volatility

of volatility increases or the correlation decreases. We allow for this possibility by

letting the volatility risk premium parameter η(st) be regime-dependent.

In the application, we look at several variants of this model:

SV Stochastic volatility, no jumps, no regime switching.

SJ Stochastic volatility, volatility-scaled jumps, no regime switching.

UJ Stochastic volatility, volatility-unscaled jumps, no regime switching.

SJ-RV Stochastic volatility, volatility-scaled jumps, regime switching for σ.

UJ-RV Stochastic volatility, volatility-unscaled jumps, regime switching for σ.

SJ-RL Stochastic volatility, volatility-scaled jumps, regime switching for ρ.

UJ-RL Stochastic volatility, volatility-unscaled jumps, regime switching for ρ.

SJ-RVL Stochastic volatility, volatility-scaled jumps, regime switching for both σ

and ρ.

UJ-RVL Stochastic volatility, volatility-unscaled jumps, regime switching for both

σ and ρ.

And finally, in our empirical work, we will use an Euler scheme approximation

to the model. For the physical model (and analogously for the risk-neutral model),
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the approximation is given by

yt+1 = yt + µ− µ1Jtλ1 −
1
2

exp(vt) + exp(vt/2)ε1,t+1 +
N1,t+1∑
j>N1,t

ξ1j

vt+1 = vt + k(v − vt)− µ2Jtλ1 + σ(st)ε2,t+1 +
N1,t+1∑
j>N1,t

ξ2j

(4)

where ε1,t+1 and ε2,t+1 are standard normals with correlation ρ(st), and ξ1j and ξ2j

have the same distribution as the jumps in the continuous-time model. The regime

state, st, follows the discrete-time Markov process with p(st+1 = i|st = j) = Pij,

corresponding to the transition matrix

P =

(
π0 1− π1

1− π0 π1

)
.

For computational purposes, we need to set some upper bound for the maximum

number of jumps possible in a single day. In our application we set this upper bound

to five jumps. Given our estimates for jump intensity, the approximation error due

to imposing this constraint is negligible.

3 Methodology

The introduction of the regime-switching feature means that the models used in this

paper require the development of new estimation techniques. While the estimation

strategies used in similar work often rely heavily on computationally costly simulation

methods, the approach we propose in this paper can be executed in several minutes

on a typical desktop PC. Our approach consists of three steps: (1) back out volatility

states from observed option prices, (2) filter regime states using a Bayesian recursive

filter, and (3) optimize the likelihood function using the volatility and regime states

obtained in the previous two steps. As a by-product of the algorithm, we obtain a

series of generalized residuals which we make use of for model diagnostics. A detailed

description of each step of the procedure is provided below.
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3.1 Extracting the volatility states

Building on the work of Chernov and Ghysels (2000), Pan (2002), Ait-Sahalia and

Kimmel (2007), and others, we make use of observed option prices in addition to

the price of the underlying asset to estimate the model. The panel of option prices

observed on any particular day implies a risk-neutral distribution of returns for the

underlying asset (see, e.g., Derman and Kani 1994, Dupire 1994, Rubinstein 1994,

and Ait-Sahalia and Lo 1998). Neuberger (1994) and Carr and Madan (1998) provide

a model-free approach to estimating the integrated variance of returns under the risk-

neutral measure using observed option prices (see also Demeterfi, Derman, Kamal,

and Zou 1999 and Carr and Wu 2009). Bakshi, Kapadia, and Madan (2003) build on

this work and extend it to higher moments.

Given estimates for the risk-neutral variance it is possible to back out spot volatil-

ity and regime states. The idea of using model-free estimates of option-implied volatil-

ity in this manner has been used in similar applications by Jones (2003), Duan and

Yeh (2007), and Ait-Sahalia and Kimmel (2007), among others.

Volatility can also be estimated using high-frequency data or based on returns

data alone. However, Blair, Poon, and Taylor (2001), Christensen and Prabhala

(1998), and Fleming (1998) argue that, at least for the S&P 100 index, option prices

are more informative than realized volatility in forecasting future volatility. Jiang

and Tian (2005) find that the model-free implied volatility offers the most efficient

information for volatility forecasting, and that it subsumes the information contained

in the Black-Scholes implied volatility and the realized volatility.

The problem of how to back out the corresponding volatility and regime states

remains. Following Bakshi, Kapadia, and Madan (2003), let IVT
t denote the square

root of the variance of log returns on the interval (t, T ] under the risk-neutral measure.

Given a risk-neutral model for stock price dynamics and values for the volatility and

regime states, IVT
t can be obtained by integrating the quadratic variation of the log

stock price. For the SJ models, for example, we get

IVT
t =

√
1

T − t
EQ
t

{∫ T

t

evτ
[
1 + λ1(µ2

1J + σ2
1J)
]
dτ

}
.

The expectation in the above expression can be computed by means of Monte Carlo
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simulations. For the SJ models, for example, we get

IVT
t =

√√√√ 1

(T − t)S

S∑
s=1

{∫ T

t

ev
(s)
τ

[
1 + λ1(µ2

1J + σ2
1J)
]
dτ

}
, (5)

where for each s, v
(s)
τ is obtained by simulating a path from the risk-neutral analog

of Equation (4) for t < τ ≤ T , and S denotes the number of simulation paths.

However, we actually want to go in the reverse direction. That is, observed values

for IV T
t are available and we need to obtain the corresponding volatility and regime

states, vt and st, by inverting Equation (5). We begin by showing how to do this

conditional on the regime state (the issue of backing out the regime state is addressed

in the next subsection).

Given an initial value for the regime state, st = i, the first step is to obtain an

approximation to the mapping from spot to integrated volatility,

Γi : SV −→ IV,

where SV denotes the spot volatility, i.e., SVt = exp(vt/2), and the subscript i denotes

the conditioning on initial regime state. The simplest way to do this is to evaluate

(5) on some grid of initial values for SV and then use some curve fitting technique

to approximate Γi. That is, let ŜV1 < ŜV2 < · · · < ŜVG be the grid, where G is the

number of grid points and we use hats to indicate that these are grid points rather than

data. For each g = 1, . . . , G, evaluate ÎVg = Γi(ŜVg) using Monte Carlo methods as

described above (note that while the initial regime state is given, it evolves randomly

thereafter). Then approximate Γi based on the collection of pairs {(ŜVg, ÎVg)}Gg=1.

As long as this mapping is monotonic, it is equally straightforward to approximate

the inverse, Γ−1
i : IV −→ SV , which is what we are really interested in. Let Γ̂−1

i

denote the approximation.

In principle, there are many curve fitting schemes one could use. However, since

we are using the result in a numerical optimization, it is best if the scheme results

in smooth derivatives. We have found that simply fitting a cubic polynomial to

the collection {(ŜVg, ÎVg)}Gg=1 using nonlinear least squares works well. For all of

the models used in this paper, Γi is close to linear, so a cubic polynomial gives

plenty of flexibility. We also tried higher order polynomials, splines, and various other
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interpolation schemes, but none provided noticeable improvements. Approximation

errors are negligible for any reasonable scheme.

Once we have obtained Γ̂−1
i , the hard work is done. Given an observed value for

option-implied integrated volatility, IVt and assuming st = i, evaluate Γ̂−1
i to obtain

SVt. Then, the volatility state itself is given by vt = 2 log(SVt). Repeat this for

each t = 1, . . . , n. The important thing to notice here is that computing Γ̂i, which is

the costly step, need only be done once (for each set of candidate parameter values).

Once this is accomplished, the evaluation step is fast.

3.2 Filtering the regime states

Given an observed value of IVt, we now have two possible values for SVt (and vt), one

for each regime state. Let vjt denote the volatility state corresponding to regime j.

The second step of the estimation involves applying a filter to compute pjt = p(st =

j|Ft) = p(vt = vjt |Ft).

The filter is constructed recursively using standard techniques. Let pt = (p0
t , p

1
t )
′

for each t = 0, . . . , n, and initialize the filter by setting pj0 equal to the marginal

probability of state j (j = 0, 1). Now, suppose that pt is known. The problem is to

compute pt+1. This is given by

pjt+1 =

∑1
i=0 p(yt+1, v

j
t+1|yt, vit, st = i) · p(st+1 = j|st = i) · pit∑1

k=0

∑1
i=0 p(yt+1, vkt+1|yt, vit, st = i) · p(st+1 = k|st = i) · pit

, j = 0, 1.

The third factor in the summand is known from the previous step of the recursion.

The second factor is determined by the Markov transition matrix of the regime state

process. But, some attention is required in computing the first factor. Since we allow

for the possibility of more than a single jump per day, it is necessary to sum over the

potential number of jumps,

p(yt+1, v
j
t+1|yt, vit, st = i) =

NJmax∑
k=0

p(yt+1, v
j
t+1|yt, vit, st = i,NJt = k)p(NJt = k)

where NJt is the number of potential jumps on day t, NJmax is the maximum number of

allowable jumps in a single day, and p(NJt = k) = [λ1]k e−λ1/k! is given by the Poisson

distribution with intensity λ1. The distribution of
(
yt+1, v

j
t+1|yt, vit, st = i,NJt = k

)
is
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bivariate normal with mean and variance given by summing the means and variances

of the diffusive part of the process and k jumps, according to the equation (4).

It is sometimes useful to speak of the filtered regime state. By this we mean the

expected value of st conditional on information available at time t,

ŝt = Et(st) = p0
t · 0 + p1

t · 1 = p1
t .

3.3 Maximum likelihood estimation

Having backed out volatility states and computed filtered regime state probabilities,

computing the log likelihood is straightforward:

logL({yt}nt=1, {IVt}nt=1; θ) ≈
n−1∑
t=1

1∑
i=0

1∑
j=0

[
log p(yt+1, v

j
t+1|yt, v

i
t, st = i) + log p(st+1 = j|st = i)

+ log p(st = i) + log J jt+1

]
,

(6)

where J jt+1 =
∣∣dvjt+1/dIVt+1

∣∣ is the Jacobian corresponding to regime state j. Recall

that the mapping from volatility state, vjt , to IVt is given by IVt = Γj[exp(vjt/2)].

The Jacobian is obtained from the derivative of the inverse of this. As in the preced-

ing subsection, p(yt+1, v
j
t+1|yt, vit, st = i) must be computed by summing across the

number of potential jumps.

Parameter estimates are obtained by numerical optimization,

θ̂ = arg max logL({yt}nt=1, {IVt}nt=1; θ).

We use a BHHH optimizer (Berndt, Hall, Hall, and Hausman 1974), but the criterion

function is well-behaved and nearly any optimizer will work fine.

3.4 Specification Tests

Our diagnostic tests are based on the idea of generalized residuals (Bai 2003, Duan

2003, and others). Let {zt}nt=1 be a sequence of random vectors where zt has dis-

tribution Gt(z|Ft−1). Let ut = Gt(zt|Ft−1) (t = 1, . . . , n). If the model is correctly

specified, {ut} should be i.i.d. uniform(0, 1). The hypothesis that {Gt(zt|Ft−1; θ)} is
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the true data generating process for {zt} can be tested by performing diagnostics on

{ut}.

But, it is often more useful to instead perform diagnostics on

ũt = Φ−1(ut), t = 1, . . . , n (7)

where Φ is the standard normal distribution function. In this case, the transformed

residuals {ũt} should be i.i.d. standard normal under the hypothesis of correct model

specification. It is these that we shall refer to as generalized residuals.

For the models in this paper, the generalized residuals are computed in a manner

similar to equation (6),

ut+1 =
1∑
i=0

1∑
j=0

P (yt+1, v
j
t+1|yt, vit, st = i) · p(st+1 = j|st = i) · pit,

where P (·) denotes a cdf. As before, this cdf must be computed by summing across

the number of potential jumps,

P (yt+1, v
j
t+1|yt, vit, st = i) =

NJmax∑
k=0

P (yt+1, v
j
t+1|yt, vit, st = i,NJt = k)p(NJt = k).

These residuals correspond to the joint distribution of price and volatility innovations.

Although one could certainly study these, we have found it more useful to study

marginal residuals corresponding to price and volatility innovations separately,

uy,t+1 =
1∑
i=0

P (yt+1|yt, vit, st = i) · p(st = i)

uv,t+1 =
1∑
i=0

1∑
j=0

P (vjt+1|yt, vit, st = i) · p(st+1 = j|st = i) · p(st = i).

In the diagnostics reported in our application, we always use the generalized residuals

obtained by applying the inverse normal cdf to these, ũy,t = Φ−1(uy,t) and ũv,t =

Φ−1(uv,t).

Having constructed these generalized residuals, testing can proceed using stan-

dard time series techniques. There is a wide variety of techniques available to test
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that the residuals are independent and normally distributed. In this paper, we look

at Jarque-Bera tests and normal-quantile plots to test normality, and Ljung-Box tests

and correlograms to test for autocorrelation. We look at Ljung-Box tests and cor-

relograms for both the residuals as well as squared residuals. Tests based on the

squared residuals allow us to look for unexplained stochastic volatility in returns and

stochastic volatility of volatility. We have found these diagnostics to be helpful.

4 Empirical results

4.1 Data

The application uses daily S&P 500 index (SPX) option data from Jan 1, 1993

through Dec 31, 2008 (N = 4025). These data were obtained directly from the

CBOE. To address the issue of nonsynchronous closing times for the SPX index

and option markets, SPX close prices are computed using put-call parity based on

closing prices for at-the-money options (see, e.g., Ait-Sahalia and Lo 1998). Op-

tion prices are taken from the bid-ask midpoint at each day’s close. Options with

zero bid/ask prices or where the the bid-ask midpoint is less than 0.125 are dis-

carded. We also eliminate options violating the usual lower bound constraints. That

is, we require C(t, τ,K) ≥ max(0, xt exp(−qtτ) − K exp(−rtτ)) and P (t, τ,K) ≥
max(0, K exp(−rtτ) − xt exp(−qtτ)) where C(t, τ,K) and P (t, τ,K) are the time t

prices of call and put options with time-to-maturity τ and strike price K, x is the in-

dex price, q is the dividend payout rate, and r is the risk-free rate. Finally, we require

that valid prices exist for at least two out-of-the-money call and put options for each

day. Options are European, so there is no issue regarding early exercise premium.

Time-series of one-month risk-neutral volatility, skewness, and kurtosis are com-

puted using SPX option prices following the model-free approach of Bakshi, Kapadia,

and Madan (2003). Following Carr and Wu (2009), we use the two closest times to

maturity greater than eight days and linearly interpolate to construct 30 day constant

maturity series. Jiang and Tian (2007) report the possibility of large truncation and

discretization errors in the VIX index. To reduce such errors, we follow the approach

of Carr and Wu (2009) in interpolating/extrapolating option prices on a fine grid

across moneyness.
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Five-minute intraday S&P 500 index returns are used to compute measures of

the variance risk premium and jump risk. Since these variables are possibly related

to option-implied skewness and kurtosis, we include them as control variables in the

regressions of option-implied skewness and kurtosis on the regime state (Section 5).

The high-frequency data were obtained from TickData.com.

Following Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen, Bollerslev,

Diebold, and Labys (2003), and Barndorff-Nielsen and Shephard (2002), daily realized

volatility is obtained by summing the squared intraday returns over each day,

RV
(d)
t ≡

1/∆∑
j=1

(
yt−1+j∆ − yt−1+(j−1)∆

)2

where ∆ is the sampling interval for the intraday data (we use five minute intervals).

Monthly realized volatility is obtained by summing the daily realized volatilities over

the previous month,

RVt ≡
21∑
i=0

RV
(d)
t−i.

Following Carr and Wu (2009), we define the variance risk premium as the log

difference between monthly realized variance and option-implied variance,

VRPt ≡ log
(
RVt/VIX2

t

)
,

where VIXt is the VIX index, divided by
√

12 to get a monthly volatility measure

comparable to RVt. We use the log difference because we find that it provides a better

measure than the difference in levels.

A measure of jump risk is obtained using the approach of Barndorff-Nielsen and

Shephard (2004). The bipower variation is given by

BV
(d)
t ≡

π

2

1/∆∑
j=2

(
yt−1+j∆ − yt−1+(j−1)∆

)(
yt−1+(j−1)∆ − yt−1+(j−2)∆

)
.

The daily jump variation is defined by subtracting the daily bipower variation from
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the daily realized volatility,

JV
(d)
t ≡ max(RV

(d)
t − BV

(d)
t , 0).

And, finally, the monthly jump variation is obtained by summing the the daily jump

variations over the previous month,

JVt ≡
21∑
i=0

JV
(d)
t−i.

We shall typically refer to RVt and JVt as the realized volatility and jump vari-

ation hereafter (omitting the “monthly” specifier). Note that these variables are

defined using information available at time t.

One- and three-month Treasury bill rates (obtained from the Federal Reserve

website), interpolated to match option maturity, are used as a proxy for the risk-free

rate. Dividend rates are obtained from the Standard and Poor’s information bulletin.

Actual dividend payouts are used as a proxy for expected payouts.

Throughout, time is measured in trading days. SPX returns and option-implied

moments are plotted in Figure 1. Figure 2 shows scatter plots of option-implied skew-

ness and kurtosis versus option-implied volatility. Summary statistics are reported in

Table 1.

4.2 Parameter estimates and model comparisons

Parameter estimates and log likelihoods for all of the models under consideration are

shown in Table 2. As found in previous work, including jumps in returns and volatility

gives a large improvement in log likelihood relative to a model with no jumps (over 300

points in log likelihood). The SJ model (jumps scaled by volatility state) is strongly

preferred over the UJ model (unscaled jumps). The improvement is over 40 points

in log likelihood with the same number of parameters. In the scaled jump model,

jumps are larger on average when overall volatility is high. In the unscaled jump

model, in contrast, jump sizes are identically distributed across time and unaffected

by the volatility state. Although models with unscaled jumps have been commonly

used in previous work, (e.g., Pan 2002; Eraker, Johannes, and Polson 2003; Broadie,
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Chernov, and Johannes 2007), this form is not consistent with the data.

Including regime switching provides additional large improvements over the mod-

els with no regime switching. The SJ model with regime switching in volatility of

volatility (SJ-RV) offers an improvement of 110 points in log likelihood relative to

the corresponding model without regime switching (SJ) at the cost of four additional

parameters. Including regime switching in leverage effect (SJ-RL) provides less of a

gain, but still gives an improvement of 32 points in log likelihood relative to the model

without regime switching (SJ) at the cost of four additional parameters. Including

regime-switching in both volatility of volatility and leverage effect (SJ-RVL) does

slightly better than either alone, with an improvement of 118 points in log likelihood

relative to the SJ model and five additional parameters.

To the extent that the models are nested, comparisons can be done by standard

likelihood ratio tests. For example, the following models nest: SJ-RVL > SJ-RV > SJ

> SV. In pairwise comparisons among these models, the larger model always rejects

the smaller model, with p-values ranging between .0001 and 10−153. The overall

preferred model, SJ-RVL, rejects its non-regime-switching counterpart, SJ, with a

p-value of about 10−48. This would typically be regarded as convincing evidence.

Note that while SJ does not include regime switching, it does include jumps and is

itself vastly better than the models with unscaled jumps typically used in the existing

literature.

A potentially more useful way to compare models is by using some form of

information criterion. Akaike and Schwarz information criteria are common choices.

These are based on comparison of log likelihood minus some penalty based on the

number of free parameters in the model. The Akaike information criterion uses a

penalty equal to the number of free parameters, while the Schwarz criterion (also

known as the Bayesian information criterion) uses a penalty equal to the number of

free parameters times ln(n)/2, where n is the number of observations. For either

of these, the results are the same: SJ models are always preferred over their UJ

counterparts. Among SJ models, the ranking is SJ-RVL > SJ-RV > SJ-RL > SJ.

The rankings are all decisive.

Our joint analysis of the physical and risk-neutral models allows us to estimate

the parametric variance risk premium. Since the variance risk premium may be

dependent on regime states, we allow the parameter that determines this premium,
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η, to be regime-dependent. For the SJ model with regime switching in volatility of

volatility (SJ-RV), η is larger in the high volatility of volatility state than in the low

one, i.e., η1 > η0. Since log volatility, vt, is always negative, this implies that η1vt <

η0vt. That is, higher volatility of volatility corresonds to a more negative variance

risk premium. This is consistent with theory (Bollerslev, Gibson, and Zhou 2009).

Similarly, in the models with regime switching in leverage effect (both SJ-RL and

UJ-RL), the stronger leverage effect state (more negative correlation between returns

and volatility innovations) corresponds to a more negative variance risk premium.

This is also consistent with theory.

Time series plots of filtered values for the regime-dependent parameters in several

models are shown in Figure 3. For the models with regime switching in volatility of

volatility, for example, σ takes on two possible values (σ0 or σ1). The filter described in

Section 3.2 provides probabilities for each state conditional on available information,

pjt = p(st = j|Ft). Filtered estimates of σ are thus given by σ̂t = Et[σ(st)] =

p0
tσ

0+p1
tσ

1 (t = 1, . . . , n). An analogous procedure is used to compute ρ̂t (t = 1, . . . , n)

for the models with regime-switching leverage effect.

The jump models can be thought of as special cases of the regime-switching model

where the regime state (jump or no jump) does not depend on past information (i.e.,

the state variable is i.i.d.). In our regime-switching models, in contrast, the state is

quite persistent. Indeed, it is precisely this persistence that accounts for the large

improvements in log likelihood. With SJ-RV, for example, the estimated persistence

parameters are π0 = .98 and π1 = .94 (the probability of staying in regime 0 or regime

1, respectively, from one day to the next). The expected duration of stays is 50 days

for regime 0 and 17 days for regime 1. By not accounting for persistence in the state,

the jump models leave a great deal of information on the table.

Expectations of future volatility of volatility and leverage effect are dramatically

different depending on the current regime. The estimated volatility of volatility pa-

rameters are 0.084 for state 0 versus 0.133 for state 1 in the SJ-RV model. The

estimated leverage parameters are -0.53 for state 0 versus -0.82 for state 1 in the

SJ-RL model. Because of the high degree of persistence in regime states, these differ-

ences remain even over relatively long time horizons. This is not of purely theoretical

interest. Any investors interested in the dynamics of volatility will find this informa-

tion useful. For example, volatility options and swaps are highly dependent on the

23



volatility of volatility. As discussed below, these persistent differences also affect the

shape of the volatility smirk.

4.3 Diagnostics

QQ-plots for return and volatility residuals are shown for several models in Figures

4 and 5. Correlograms are shown in Figure 6. Jarque-Bera and Ljung-Box statistics

are shown in Table 3.

Beginning with the qq-plots and Jarque-Bera statistics, including jumps in the

model provides an enormous improvement over the model with no jumps, consistent

with the previous literature. This is true regardless of the form of the jumps (SJ or

UJ). However, the scaled jump models (SJ) do much better than those with unscaled

jumps (UJ), suggesting that the SJ models do a much better job of capturing non-

normality in return and volatility innovations. For the SJ models, including regime

switching provides additional small improvements (for the UJ models, only regime

switching in leverage effect helps). The outperformance of the SJ models over the UJ

models is maintained even when the regime switching feature is added.

In any event, all of the models are rejected by the Jarque-Bera test at conven-

tional significance levels. Standard jump models, even with the addition of the regime

switching feature, are simply not flexible enough to capture accurately the true shape

of the distribution of innovations. Perhaps models with multiple jump processes might

do better. Possible alternatives might be to try using more flexible regime-switching

models or modeling the bivariate distribution of return-volatility innovations using

mixtures of normals.

Turning now to the correlograms, all of the models do relatively well at eliminat-

ing autocorrelation in return residuals. On the other hand, all of the models fail with

respect to the volatility residuals, which show significant negative autocorrelation for

the first several lags. This is suggestive of the existence of a second volatility factor

omitted by the model (e.g., Gallant, Hsu, and Tauchen 1999; Chacko and Viceira

2003; Christoffersen, Heston, and Jacobs 2009).

All of the models except those with regime switching in volatility of volatility also

show a large amount of unexplained autocorrelation in squared volatility residuals.

This is suggestive of stochastic volatility of volatility. Although the regime-switching
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model implements a very simple form of stochastic volatility of volatility, it is a

substantial improvement over the other models.

The fact that none of the models are able to pass the full set of diagnostics may

seem disappointing, but should not really be viewed as such. In the first place, the

data set is very rich, with 4025 observations on both price and volatility. The idea

that one might fully capture the behavior of this data in a model with just a dozen

or so parameters is highly optimistic. Furthermore, the diagnostics provide useful

information on failure modes which can help to direct future work.

5 Explanatory power for option-implied skewness

and kurtosis

Sections 4.2 and 4.3 show that the regime switching models provide dramatic im-

provements in fitting the joint dynamics of returns and the volatility state. Both

time-varying leverage effect and stochastic volatility of volatility are important. Fur-

thermore, the regimes corresponding to high and low states of both variables are

highly persistent, implying that there is considerable predictability regarding future

regime states. In addition, each of these variables has a direct effect on the shape of

return distributions. As noted by Das and Sundaram (1999), standard jump models

can add skewness and kurtosis to the distribution of returns, but primarily at short

horizons. The effect dissipates relatively quickly. Increasing either the correlation

between return and volatility innovations (leverage effect) or volatility of volatility

also adds skewness and kurtosis to return distributions. The effects of these variables

are weaker at short horizons but more persistent.

Option prices provide an alternative source of information about the distribution

of returns at various horizons, but under the risk-neutral rather than physical mea-

sure. Features of these distributions that are of potential interest include variance,

skewness, and kurtosis, as well as the term structure of variance. These characteris-

tics all exhibit considerable variation across time. A great deal of attention has been

devoted to models that describe time-variation in the variance in returns, but less

attention has been paid to the other features.

The issue of interest here is whether time-varying characteristics of the physical
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dynamics of returns have explanatory power for time-variation in the shape of the

risk-neutral distribution (or equivalently, in the shape of the volatility smirk). An

alternative explanation is that time-variation in the shape of the risk-neutral distri-

bution is due largely or entirely to changes in risk premia.

Based on observed data, option-implied skewness and kurtosis are related to

the level of the volatility state, but the relationship is weak. This suggests that

models with volatility as the only state variable will be able to explain only a small

part of the time-variation exhibited by the shape of the risk-neutral distribution (or

equivalently, the implied volatility smirk). Including jumps and jump risk premia

in various configurations can help match the average shape of the implied volatility

smirk, but will never be able to explain time variation that is independent of the

volatility state unless an additional state variable is introduced.

In this section, we examine whether the regime states implied by our regime-

switching models have any explanatory power for the shape of the risk neutral distri-

bution. Recall that option-implied skewness and kurtosis are not used in the estima-

tion, which makes this diagnostic meaningful.

Given a model for the price of an asset and values for any relevant state variables,

one can easily obtain the model-implied distribution of returns at any horizon using

Monte Carlo methods. We will refer to these as model-implied skewness and kurtosis.

Given time series for option-implied volatility and skewness (or kurtosis) and a model

with two state variables (such as our regime-switching models), it is not difficult to

find model parameters and values for the state variables such that model-implied and

option-implied characteristics match exactly. To the extent that implied physical and

risk-neutral model parameters differ, these differences would typically be attributed to

risk premia. However, since this approach confounds the information from physical

dynamics and option prices, it is difficult to tell if the implied variation in states

(e.g., leverage effect or volatility of volatility) is truly evident in the physical model

or just an artifact of trying to match the shape of the volatility smile. The problem

here is a pervasive one in the option-pricing literature. It is possible to fit even a

badly misspecified model to the data. The fitted model is likely to generate spurious

risk premia, but the exact source and extent of the misspecification are difficult to

diagnose.

The approach that we take in this paper is different. While we match option-
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implied volatility exactly, we do not use the information on option-implied skewness

and kurtosis in the estimation. In particular, we make no effort to use the information

in option prices to come up with model parameters and regime states such that option-

implied and model-implied skewness or kurtosis match exactly. We also do not look

for risk premia which cause the models to fit the shape of the implied volatility

smirk on average. Rather, we fit the models using only information from returns and

implied volatility. We are then able to make a clear and unambiguous examination

of the extent to which the implied states are informative about variation across time

in observed option-implied skewness and kurtosis.

One possible hypothesis is that time variation in the shape of the risk-neutral

distribution is due exclusively to time-varying risk premia. We are able to reject this

hypothesis decisively.

The idea is to regress option-implied skewness and kurtosis on the regime state,

controlling for other possible determinants. As described in Section 3, it is not possible

based on observed data to determine the regime state conclusively. The available

information consists of filtered probabilities, pjt = p(st = j|Ft) (j = 0, 1). The

operational regression equations are thus

SKEWt = β0 + βRVŝ
RV
t + βRLŝ

RL
t + βVIX log VIXt + βVRPVRPt + βJV log JVt + εt

KURTt = β0 + βRVŝ
RV
t + βRLŝ

RL
t + βVIX log VIXt + βVRPVRPt + βJV log JVt + εt

(8)

where ŝRV
t denotes the filtered state under the models with regime switching in volatil-

ity of volatility and ŝRL
t denotes the filtered state under the models with regime

switching in leverage effect (as described in Section 3.2). We also include several

control variables. VIXt is the VIX index, which serves as a proxy for the volatil-

ity state. VRPt is the variance risk premium, which Bollerslev, Gibson, and Zhou

(2009) argue reflects information on variation across time in investors’ risk aversion.

Option-implied skewness and kurtosis may also be affected by the market expectation

of jump risk. We proxy for this by using the past one-month jump variation, JVt. A

more detailed description of these variables may be found in Section 4.1. We first run

the regressions on the control variables alone, and then add the regime state to the

regressions to see if there is a significant increase in explanatory power. We report

Newey-West robust t-statistics over eight lags (Newey and West 1987) and adjusted

R2. For completeness, results are reported for the regressions based on filtered regime
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states from both SJ and UJ models.

Table 4 shows the regressions for option-implied skewness. We first discuss the

contributions of the control variables toward explaining option-implied skewness. The

volatility state (VIX) is highly significant for all models and regardless of whether the

regime state is included in the regression. The coefficient is always positive, meaning

that low volatility states are associated with more left-skewed return distributions.

This is consistent with Dennis and Mayhew (2002), who report a similar finding for

individual stocks. The variance risk premium (VRP) is also highly significant for all

models. The coefficient is always negative, suggesting that risk-aversion is positively

related to skewness. That is, the risk-neutral distribution tends to be more left-

skewed when risk aversion is low. This is consistent with the finding of Bakshi and

Kapadia (2003) that there is a negative relation between delta-hedged gains (which

are positively related to the variance risk premium) and skewness. We do not find

jump variation (JV) to be significant when the other control variables are included.

Although the volatility state is highly significant, it has relatively low explanatory

power for option-implied skewness, with an adjusted R2 of 7.6%. All of the control

variables together are able to explain only 9.3% of the time-variation in option-implied

skewness. This low explanatory power suggests that models with only a single state

variable (volatility) will not be able to match time-varying patterns in the Black-

Scholes volatility smirk realistically.

Including the filtered regime state in the regressions provides a dramatic im-

provement in explanatory power. This is true regardless of the particular model

used. SJ models always outperform the corresponding UJ models. Including the

regime state from the models with regime-switching in volatility of volatility (SJ-RV

and UJ-RV) is slightly better than including the regime state from the models with

regime-switching in leverage effect (SJ-RL and UJ-RL). But the clear winner is the

model which includes regime states from both regime switching models (RV and RL).

The states corresponding to volatility of volatility and regime switching each have

substantial explanatory power when included in the regression alone. But, these two

variables serve as complementary sources of information. For the regressions using

states generated from the SJ models (together with all control variables), the R2 is

18-19% when either the RV or RL states are included individually, but jumps to over

32% when both are included. The rankings here are consistent with those implied
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by the model comparisons described in Sections 4.2 and 4.3. But, it is important

to recognize that this result is not necessarily expected a priori since the dependent

variable here, implied skewness, was not involved in fitting those models. The entire

point of performing the study in this manner is to enable regressions such as those

under examination in this section as meaningful diagnostics.

For the SJ-RV model (regime-switching in volatility of volatility), the coefficient

on the regime state is highly significant and in the expected direction. For the full

regression (including regime state and all control variables), the estimated slope co-

efficient for the regime state is -0.61, indicating that a change from state 0 to state

1 is associated with a 0.61 decrease in skewness (i.e., the distibution is substantially

more left skewed in the high volatility of volatility state). The t-statistic is -9.94,

corresponding to a p-value of around 10−22. This model has good explanatory power,

with an adjusted R2 of 19.2% (versus 9.3% for the control variables alone). These

results are both statistically and economically significant.

The SJ-RL model (regime switching in leverage effect) provides comparable per-

formance. The coefficient is highly significant and in the expected direction. For the

full regression (including regime state and all control variables), the estimated slope

coefficient is -0.60, indicating that a change from state 0 to state 1 is associated with a

0.60 decrease in skewness (i.e., the distibution becomes substantially more left skewed

in the state with the stronger leverage effect). The t-statistic is -7.93, corresponding

to a p-value of around 10−15. This model has an adjusted R2 of 18.3%.

We also ran the regression using regime states from the models with regime

switching in both volatility of volatility and leverage effect (SJ-RVL and UJ-RVL),

but do not report the results in the table out of space considerations. For the SJ-RVL

regression (including all control variables), the slope coefficient for the regime state is

-0.65 with a t-statistic of -11.43, indicating a slightly stronger effect than in the other

models. The adjusted R2 is 23.0%, which indicates slightly better explanatory power

than the more constrained models.

But the regressions including regime states from both RV and RL models do

substantially better than any of those which include only a single regime state. It

is important to understand the difference between these regression and the ones in-

volving regime states from the RVL models. In the RVL models, both volatility of

volatility and leverage effect are state dependent, but there is only a single state
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variable controlling both. In the regression including regime states from both RV

and RL models, there are two different regime state variables involved. A priori, it

is unknown whether the two states contain largely the same or significantly different

information. It turns out that the states provide different information. The slope

coefficients change little when both states are included in the model (relative to in-

cluding them individually), they are even more significant (based on t-statistics), and

the increase in explanatory power is substantial.

Table 5 shows analagous regressions for option-implied kurtosis. The results are

qualitatively similar to those for option-implied skewness. The volatility state (VIX) is

highly significant for all models and regardless of whether the regime state is included

in the regression. The coefficient is negative, implying that low volatility states are

associated with fatter-tailed return distributions. The variance risk premium (VRP)

is positively related to kurtosis. That is, the risk-neutral distribution tends to be

more fat-tailed when risk aversion is low. Jump variation (JV) is not significant when

the other control variables are included.

Although VRP on its own is only marginally significant and has little explanatory

power, when combined with the VIX it becomes highly significant. The regression on

all three explanatory variables together has a surprisingly high R2 of 17.0%.

Including the regime state in the regression provides additional improvement in

explanatory power. As with option-implied skewness, SJ models always outperform

the corresponding UJ models. Slope coefficients for the regime state have the expected

signs. That is, higher volatility of volatility and stronger leverage effect are both

associated with more kurtotic return distributions.

Including the regime state corresponding to regime switching in leverage effect

does better here than including the regime state corresponding to regime switching

in volatility of volatility (adjusted R2 of 18.4% for SJ-RL versus 22.8% for SJ-RV).

As is the case with implied skewness, including both regime states in the regression

is better yet, with an R2 of 25.6%. In the full model, slope coefficients are 3.08 and

5.09 (with t-statistics of 5.38 and 8.86) for the SJ-RV and SJ-RL states respectively.

These are both economically and statistically significant.

Pan (2002) and Broadie, Chernov, and Johannes (2007) argue that the existence

of a jump risk premium could have a significant effect on the shape of the volatility

smirk. However, their models include only a single state variable and are not able to fit
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time variation in the shape of the volatility smirk that is independent of the volatility

state. The goal of this paper is very different from those. In particular, our objective

is to identify model characteristics that could be responsible for time variation in the

shape of the volatility smirk. Also, whereas those papers rely substantially on risk

premia in jump sizes to fit the smirk, our focus is on whether there is information

present in the physical measure that is related to changes in the shape of the smirk.

The issue of whether information exists in the physical measure that is related to

features of observed option prices is important. Any differences between the dynamics

implied by the physical measure and those implied by option prices will be ascribed

to risk premia. But if models are misspecified, then the risk premia “discovered” in

this way are likely to be just artifacts.

On the other hand, we make no effort to investigate factors underlying the average

shape of the smirk, and thus have nothing to say about the issue of whether the smirk

is, on average, due to jumps or some other factor. Among other things, the relative

importance of various potential factors toward explaining the shape of the smirk

will depend on the time-horizon under consideration. As pointed out by Das and

Sundaram (1999), jumps can have a large effect on the skewness of return distributions

over short horizons, but the effects dissipate relatively quickly. The leverage effect

and volatility of volatility have less of an effect at short horizons, but the effects are

more persistent. Sorting out the relative importance of these factors would require

looking at the term structure of the smirk (which this paper makes no attempt to

do).

We did, nonetheless, investigate models with regime switching in jump intensity,

but did not find such models to be useful for the purposes of this paper. These

models were heavily dominated by the other regime switching models in terms of log

likelihood and the model diagnostics discussed in Sections 4.2 and 4.3. They also

did not prove informative in terms of explanatory power for option-implied skewness

or kurtosis, as discussed in this section. Our regression results do include the jump

variation variable (JV) as a control. This variable, which serves as a proxy for jump

risk, is not significant at even the 10% level in the regressions for either option-implied

skewness or kurtosis when the other control variables are included.

In a nutshell, we find that the regime states corresponding to both volatility of

volatility and leverage effect have strong explanatory power for option-implied return
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distributions. Models used in simultaneous estimation of physical and risk-neutral

measures typically use only a single state variable, volatility. While there is some

linkage between the volatility state and the shape of the implied-volatility smirk, the

relationship is relatively weak. If such models are taken seriously, one must conclude

that most of the time-variation in the shape of the implied-volatility smirk is due to

unmodelled changes in risk premia. The results of this study are important because

they demonstrate a model in which observable phenomena in the physical measure

have strong explanatory power for time-variation in the shape of the implied-volatility

smirk.

6 Conclusion

This paper proposes a new class of models that layers regime switching on top of

a standard stochastic volatility model with jumps in both returns and volatility.

Motivated by the time-varying nature of option-implied skewness and kurtosis that are

a prominent feature of observed data, we allow for regime switching in two parameters

of the basic model: volatility of volatility and leverage effect. The both parameters

are able to affect the skewness and kurtosis of returns. The application looks at SPX

index data. To estimate the models, we rely upon data on only the time-series of

price and option-implied volatility of the index. This allows us to use observations

on option skewness and kurtosis for diagnostic purposes.

The models with regime switching fit the data much better than those without

regime switching. Accounting for time-variation in volatility of volatility or leverage

effect not only increases log likelihood significantly, but also provides improvements

in some of our diagnostics of model fit. For example, the data show strong evidence of

stochastic volatility of volatility. The regime-switching model in volatility of volatil-

ity does a good job of explaining this feature of the data. The best model in this

dimension is the one with regime-switching in both the volatility of volatility and

leverage effect.

While the fact that our models do a better job of explaining the time-series data

of price and volatility than existing models is useful, the models also demonstrate

explanatory power for option skewness and kurtosis. To test this, we run regressions

of option skewness and kurtosis on filtered regime states and several control variables
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for each model. Since we do not use the information of skewness and kurtosis in

model estimation, such regressions are meaningful.

Changes in volatility of volatility and leverage effect are each significantly asso-

ciated with time-variations in option skewness and kurtosis. The results are robust

to other possible determinants such as volatility state, variance risk premium (proxy

for risk aversion), and jump variation (proxy for jump state). The best performing

model is the one with regime switching in both volatility of volatility and leverage

effect.

The coefficient on the regime state is in expected direction for all models. This

result indicates that the option-implied return distributions tend to be more left-

skewed and leptokurtic at a time of higher volatility of volatility or stronger leverage

effect. Any model which makes an attempt to fit option skewness or minimize option

pricing errors may be at risk of spuriously fitting option skewness, unless it consider

the stochastic factors in question. A correct option pricing model should be able to

account for the stochastic volatility of volatility and leverage effect as implied in the

time-series data.

We also find that the specification of jump structures is important in fitting

the time-series data of returns and volatility as well as matching the time-variation

in skewness and kurtosis. The volatility-scaled jump model (SJ) outperforms the

volatility-unscaled jump model (UJ) in these respects. The former not only improves

log likelihood with the same number of parameters, but also provide far better diag-

nostic features of model fit than the latter. Besides, the SJ-based regime switching

models do a better job of explaining option skewness and kurtosis than the UJ-based

regime-switching models.
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Table 1: Summary statistics.

The sample period covers January 1993 to December 2008. ∆ log(SPXt) refers to S&P 500
index log returns. VIXt is the VIX index, divided by

√
12 to get a monthly volatility measure

for comparison. IVt, SKEWt, and KURTt denote the one-month option-implied volatility,
skewness, and kurtosis, computed using the model-free approach of Bakshi, Kapadia, and
Madan (2003). RVt and JVt are the realized volatility and the jump variation, calculated
using five-minute high-frequency data over the past 30 days. VRPt ≡ log(RVt/VIX2

t )
denotes the variance risk premium. AR(i) means the i -lagged autocorrelation.

Mean Min Max STD Skewness Kurtosis AR(1) AR(5) AR(22)
∆ log(SPXt) 0.00 -0.09 0.11 0.01 -0.24 13.11 -0.06 -0.04 0.05
VIXt (%) 5.73 2.69 23.34 2.40 2.23 11.91 0.98 0.94 0.78
IVt (%) 5.62 2.22 24.46 2.55 2.26 12.31 0.98 0.94 0.79
SKEWt -1.69 -3.75 -0.41 0.49 -0.54 3.25 0.90 0.80 0.63
KURTt 9.55 3.34 34.94 4.56 1.62 6.22 0.83 0.73 0.57
RVt (%2) 21.79 1.58 457.27 40.45 6.72 57.28 1.00 0.97 0.68
JVt (%2) 3.33 0.12 83.09 6.89 7.19 67.06 0.99 0.95 0.65
VRPt -0.88 -2.16 0.82 0.42 0.16 3.07 0.96 0.83 0.50



Table 2: Parameter Estimates.

The sample period covers January 1993 through December 2008 (N = 4025). Standard
errors are in parentheses. Time is measured in trading days.

No regime switching RV model RL model RVL model
SV SJ UJ SJ-RV UJ-RV SJ-RL UJ-RL SJ-RVL UJ-RVL

µ× 104 4.69 3.70 3.08 3.03 2.07 3.42 3.08 3.00 2.08
(1.27) (1.28) (1.25) (1.25) (1.25) (1.26) (1.23) (1.25) (1.25)

κ× 103 4.29 6.00 6.69 6.34 11.07 7.48 7.36 6.27 11.04
(1.29) (1.35) (1.33) (1.32) (1.28) (1.35) (1.34) (1.32) (1.28)

v -9.71 -10.03 -9.70 -10.06 -9.63 -10.00 -9.80 -9.98 -9.63
(0.55) (0.38) (0.36) (0.32) (0.20) (0.32) (0.33) (0.33) (0.20)

η0 × 103 3.01 2.84 3.84 2.86 4.18 2.49 2.72 3.01 4.20
(0.25) (0.36) (0.35) (0.42) (0.36) (0.47) (0.44) (0.37) (0.36)

η1 × 103 2.97 2.46 3.39 4.27 2.66 2.46
(0.59) (0.41) (0.40) (0.38) (0.54) (0.42)

σ0 × 101 1.32 0.91 1.23 0.84 1.18 0.99 1.25 0.85 1.18
(0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

σ1 × 101 1.33 2.12 1.33 2.12
(0.06) (0.06) (0.05) (0.06)

ρ0 -0.74 -0.78 -0.82 -0.81 -0.91 -0.53 -0.61 -0.77 -0.91
(0.01) (0.01) (0.01) (0.01) (0.01) (0.04) (0.03) (0.01) (0.01)

ρ1 -0.82 -0.85 -0.87 -0.91
(0.01) (0.01) (0.02) (0.01)

ρJ -0.71 -0.53 -0.70 -0.05 -0.77 -0.72 -0.69 -0.04
(0.03) (0.04) (0.03) (0.10) (0.03) (0.04) (0.03) (0.10)

λ 0.47 0.33 0.55 1.08 0.30 0.15 0.46 1.08
(0.06) (0.04) (0.09) (0.14) (0.04) (0.02) (0.07) (0.15)

µ1J × 102 -1.13 0.05 -4.52 0.08 -11.90 -0.05 -3.78 0.08
(6.59) (0.04) (6.38) (0.02) (8.78) (0.07) (6.98) (0.02)

σ1J × 101 12.94 0.06 12.44 0.03 13.42 0.08 12.30 0.03
(0.75) (0.00) (0.77) (0.00) (0.85) (0.01) (0.77) (0.00)

µ2J × 101 2.79 0.24 3.39 0.09 3.59 0.44 3.04 0.08
(0.69) (0.07) (0.66) (0.04) (0.95) (0.13) (0.70) (0.04)

σ2J 1.54 0.15 1.15 0.05 1.72 0.21 1.25 0.05
(0.07) (0.01) (0.07) (0.01) (0.09) (0.01) (0.07) (0.01)

π0 0.98 0.98 0.97 0.96 0.99 0.98
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

π1 0.94 0.94 0.99 0.98 0.96 0.94
(0.01) (0.01) (0.00) (0.01) (0.01) (0.01)

log(L) 38,491 38,851 38,810 38,961 38,960 38,883 38,858 38,969 38,960



Table 3: Diagnostic tests for generalized residuals.

Test statistics are shown with p-values in parentheses.

Jarque-Bera Test

No regime switching RV model RL model RVL model
SV SJ UJ SJ-RV UJ-RV SJ-RL UJ-RL SJ-RVL UJ-RVL

Return 445 20 113 17 245 10 50 19 246
(0.000) (0.000) (0.000) (0.000) (0.000) (0.006) (0.000) (0.000) (0.000)

Volatility 2,367 22 121 20 318 8 30 15 320
(0.000) (0.000) (0.000) (0.000) (0.000) (0.018) (0.000) (0.001) (0.000)

Ljung-Box Test (with 20 lags)

No regime switching RV model RL model RVL model
SV SJ UJ SJ-RV UJ-RV SJ-RL UJ-RL SJ-RVL UJ-RVL

Return 43 41 41 41 40 41 40 41 40
(0.002) (0.004) (0.004) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005)

Volatility 116 118 116 115 100 115 114 116 100
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Squared Vol. 419 552 424 128 74 559 446 118 74
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)



Table 4: Regressions for option-implied skewness.

The table reports the results of the following regression,

SKEWt = β0 + βRVŝ
RV
t + βRLŝ

RL
t + βVIX log VIXt + βVRPVRPt + βJV log JVt + εt.

Newey-West robust t-statistics over eight lags are shown in parentheses. The sample period
covers January 1993 to December 2008. SKEWt denotes the one-month option-implied
skewness. Filtered regime states are ŝRV

t and ŝRL
t for volatility of volatility and leverage

effect respectively. The control variables are the VIX index, variance risk premium (VRP),
and jump variation (JV). Results are shown for filtered states from both SJ (scaled jumps)
and UJ (unscaled jumps) models.

Constant ŝRV
t ŝRL

t log VIXt VRPt log JVt Adj. R2

coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat

Control variables only

-2.78 (-16.43) 0.37 (6.53) 7.6%
-3.38 (-12.02) 0.60 (5.94) -0.10 (-3.21) 9.2%
-2.75 (-13.84) 0.36 (4.97) 0.000 (-0.32) 7.6%
-3.56 (-9.34) 0.67 (4.65) -0.11 (-3.37) 0.001 (0.74) 9.3%

Control variables plus filtered states from SJ models

-2.82 (-18.07) -0.56 (-9.02) 0.44 (8.48) 16.2%
-3.63 (-14.57) -0.61 (-9.98) 0.74 (8.42) -0.13 (-5.01) 19.0%
-2.76 (-16.78) -0.57 (-9.06) 0.41 (7.29) -0.001 (-1.10) 16.3%
-3.80 (-12.12) -0.61 (-9.92) 0.81 (7.00) -0.14 (-5.07) 0.001 (1.00) 19.1%

-2.82 (-15.39) -0.62 (-7.37) 0.54 (7.15) 17.5%
-3.25 (-12.37) -0.60 (-7.17) 0.69 (7.10) -0.07 (-2.23) 18.3%
-2.73 (-11.68) -0.63 (-8.12) 0.50 (5.11) -0.001 (-0.80) 17.7%
-3.22 (-8.26) -0.60 (-7.89) 0.68 (4.43) -0.07 (-2.03) 0.000 (-0.11) 18.3%

-2.87 (-18.05) -0.71 (-11.53) -0.76 (-10.66) 0.65 (10.36) 30.6%
-3.52 (-16.28) -0.74 (-12.04) -0.74 (-10.77) 0.89 (11.23) -0.10 (-4.02) 32.3%
-2.73 (-14.90) -0.72 (-11.55) -0.78 (-11.90) 0.59 (8.15) -0.002 (-1.89) 31.1%
-3.44 (-11.21) -0.74 (-11.96) -0.74 (-11.69) 0.86 (7.28) -0.10 (-3.59) -0.001 (-0.39) 32.3%

Control variables plus filtered states from UJ models

-2.62 (-16.06) -0.44 (-7.48) 0.36 (6.81) 14.2%
-3.41 (-13.30) -0.48 (-8.59) 0.66 (7.33) -0.13 (-4.97) 17.0%
-2.55 (-14.94) -0.44 (-7.55) 0.33 (5.79) -0.001 (-1.15) 14.3%
-3.58 (-11.23) -0.48 (-8.50) 0.73 (6.24) -0.14 (-5.05) 0.001 (0.98) 17.2%

-2.93 (-15.91) -0.50 (-6.57) 0.53 (7.43) 14.0%
-3.45 (-12.68) -0.48 (-6.56) 0.73 (7.19) -0.08 (-2.77) 15.2%
-2.86 (-12.77) -0.50 (-6.97) 0.50 (5.58) -0.001 (-0.73) 14.2%
-3.50 (-8.96) -0.48 (-6.82) 0.74 (4.89) -0.09 (-2.67) 0.000 (0.16) 15.2%

-2.76 (-16.64) -0.57 (-10.09) -0.65 (-9.82) 0.56 (9.35) 24.7%
-3.52 (-15.05) -0.61 (-11.07) -0.64 (-10.25) 0.85 (10.04) -0.12 (-4.79) 27.2%
-2.63 (-14.76) -0.58 (-10.26) -0.67 (-10.38) 0.51 (7.79) -0.002 (-2.09) 25.1%
-3.51 (-11.36) -0.61 (-10.96) -0.64 (-10.45) 0.85 (7.30) -0.12 (-4.50) 0.000 (-0.06) 27.2%



Table 5: Regression for option-implied kurtosis.

The table reports the results of the following regression,

KURTt = β0 + βRVŝ
RV
t + βRLŝ

RL
t + βVIX log VIXt + βVRPVRPt + βJV log JVt + εt.

Newey-West robust t-statistics over eight lags are shown in parentheses. The sample period
covers January 1993 to December 2008. KURTt denotes the one-month option-implied
kurtosis. Filtered regime states are ŝRV

t and ŝRL
t for volatility of volatility and leverage

effect respectively. The control variables are the VIX index, variance risk premium (VRP),
and jump variation (JV). Results are shown for filtered states from both SJ (scaled jumps)
and UJ (unscaled jumps) models.

Constant ŝRV
t ŝRL

t log VIXt VRPt log JVt Adj. R2

coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat coeff t-stat

Control variables only

20.22 (12.46) -3.66 (-6.96) 8.4%
32.99 (13.34) -8.40 (-9.68) 2.02 (8.02) 16.6%
19.23 (11.34) -3.21 (-5.64) 0.02 (2.22) 8.7%
35.64 (10.67) -9.48 (-7.59) 2.24 (8.09) -0.02 (-1.31) 17.0%

Control variables plus filtered states from SJ models

20.31 (12.67) 1.44 (2.44) -3.81 (-7.45) 9.0%
33.86 (14.27) 2.18 (3.90) -8.91 (-10.83) 2.14 (8.93) 18.0%
19.25 (11.69) 1.50 (2.55) -3.34 (-6.18) 0.02 (2.90) 9.4%
36.51 (11.75) 2.18 (3.87) -10.00 (-8.74) 2.35 (8.98) -0.02 (-1.47) 18.4%

20.51 (12.11) 5.14 (7.03) -5.00 (-7.57) 16.2%
31.98 (13.75) 4.60 (7.13) -9.14 (-10.79) 1.82 (7.12) 22.8%
19.04 (10.22) 5.29 (7.87) -4.38 (-5.99) 0.02 (2.26) 16.9%
33.12 (9.75) 4.52 (7.41) -9.58 (-7.26) 1.92 (7.02) -0.01 (-0.50) 22.8%

20.69 (12.63) 2.50 (4.31) 5.63 (8.11) -5.40 (-8.68) 18.0%
33.09 (15.13) 3.09 (5.47) 5.17 (8.60) -9.95 (-12.69) 1.96 (8.16) 25.6%
19.04 (10.99) 2.63 (4.53) 5.83 (9.04) -4.72 (-7.21) 0.027 (3.11) 18.9%
34.03 (10.99) 3.08 (5.38) 5.09 (8.86) -10.32 (-8.77) 2.04 (8.00) -0.007 (-0.48) 25.6%

Control variables plus filtered states from UJ models

20.00 (12.07) 0.59 (1.07) -3.64 (-6.94) 8.5%
33.07 (13.62) 1.34 (2.64) -8.58 (-10.20) 2.12 (8.74) 17.3%
18.94 (11.06) 0.66 (1.20) -3.17 (-5.66) 0.02 (2.57) 8.8%
35.71 (11.19) 1.33 (2.59) -9.66 (-8.24) 2.33 (8.85) -0.02 (-1.43) 17.7%

21.47 (12.52) 4.21 (6.24) -5.00 (-7.85) 13.7%
33.56 (13.99) 3.91 (6.57) -9.43 (-10.79) 1.93 (7.63) 21.1%
20.14 (11.09) 4.35 (6.71) -4.43 (-6.50) 0.02 (2.35) 14.3%
35.14 (10.33) 3.81 (6.58) -10.06 (-7.68) 2.06 (7.55) -0.01 (-0.74) 21.3%

21.01 (12.26) 1.54 (2.88) 4.63 (7.10) -5.09 (-8.34) 14.6%
33.79 (14.66) 2.25 (4.48) 4.49 (7.87) -9.89 (-12.00) 2.07 (8.58) 23.0%
19.48 (11.06) 1.68 (3.15) 4.82 (7.58) -4.46 (-7.11) 0.025 (3.14) 15.3%
35.18 (11.14) 2.23 (4.35) 4.40 (7.82) -10.43 (-8.83) 2.19 (8.52) -0.011 (-0.74) 23.1%



Figure 1: Time series of S&P 500 returns, option-implied volatility, option-implied
skewness, and option-implied kurtosis.



Figure 2: Scatter plots of option-implied skewness and kurtosis against option-implied
volatility.



Figure 3: Time series of filtered values of state-dependent parameters.



Figure 4: QQ plots for generalized residuals, SV and SJ models.



Figure 5: QQ plots for generalized residuals, SJ-RV and SJ-RL models.



Figure 6: Correlograms for SJ and SJ-RV models. Dotted lines show the 95% confi-
dence band.


