Background

e Given a financial asset (“stock”), we observe
— the price of the asset, and

— prices of options on it (various times to maturity and moneyness)

e We would like to have models that describes these data:
— physical measure describes asset price dynamics

— risk neutral measure describes option prices

e Given physical and risk-neutral models

— we should be able to learn something about risk premia by looking at differences between them.
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Background — continued
e Physical measure: Daily prices on the underlying typically involve several thousand observations. Suffi-
cient to fit a basic model with
— shape of returns distribution (conditional on volatility)
— time-varying volatility

— possibly other features

o Risk-neutral measure: Options provide far more information. A typical data set may involve hundreds

of thousands of option prices.
— options with varying moneyness provide information on shape of returns distribution

— options with varying time to maturity provide information on expectations at various horizons

Fitting these requires the model to have time-varying features to fit
— implied variance, skewness, kurtosis, ...
— at various horizons

on a daily basis (not just on average).

Background — continued

While this seems like a fairly straightforward problem, it turns out to be difficult.
e The fundamental problem here is one that many people would like to have:
— We have too much data!

— Easy to invalidate almost any model you might imagine.

e Also, option prices provide only indirect information about states.
— Models are written in terms of one-day ahead densities, but options are at multi-day horizons.

— Need to invert risk-neutral measure.




Background — continued

The goals are:

e Find models that combine the information from these two sources

e Assess the extent to which the dynamics implied by option prices are consistent with the dynamics of the
underlying asset price.

Background — continued

Our research agenda is directed toward addressing these problems.

o \We have developed a good collection of tools and techniques, and accumulated lots of results.
e Are now beginning to write some of this up.

e The paper of interest here is a part of this broad agenda.
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Background — continued
Modelling framework typically uses affine-jump models with a single volatility factor.
Issues:
e Only one factor (volatility).
— Can fit option-implied volatility at a single horizon.
— Cannot fit option-implied skewness, kurtosis ... at any horizons.
e Jump specification is too restrictive to fit shapes of distributions
— Mixtures of normals?
o Affine model does not fit the data. Adding jumps doesn't fit the problem.
— But give easy option-pricing formulae...
e How to get good approximations to true continuous-time model (theoretical basis)
— How good is the Euler scheme approximation?
— How much better can we do at reasonable computational cost (cpu and programmer)?
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This paper...
e Financial asset returns are well-known to exhibit stochastic volatility

e But, there is also strong evidence in favor of time-varying shape in return distributions (at least under the

risk-neutral measure):
— skewness

— kurtosis

e This can be seen from variation across time in shape of Black-Scholes implied volatility smiles.
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Goals

Address the following issues:

o |s there also evidence of time-varying shape of return distributions under the physical measure?
e How should we model the factor(s) responsible for time-varying skewness?

e Does time-variation in shape of physical measure have explanatory power for variation in risk-neutral

measure?

— Or, alternatively, is variation in risk-neutral measure due largely (or entirely) to changes in risk premia?

(e.g., due to supply and demand for options, independent of expectations for dynamics of underlying.)

e Develop techniques to analyze multi-factor, non-affine models
— fit

— assess

Note: This paper is part of a long-term research agenda designed to address related issues.
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Shortcomings in existing models — part 1

Existing models used to fit physical and risk-neutral measures simultaneously typically include only a single state
variable, volatility.
o Given value of state variable, everything about volatility surface is known:
— Level
— Slope
— Curvature

— Term structure
e But, empirically, changes in these features are not perfectly correlated.

e Compare this to models of term structure of interest rates, which typically include at least three states

(level, slope, curvature).

Note: Can add in as many different jumps and/or risk premia as you want, basic problem remains...
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Model — starting point

Given a probability space (€2, F,P) and information filtration {7}, the ex-dividend stock price, x;, is assumed to

evolve as

day )z = [[1. — TLL”A} dt + exp(ve/2)dWy; + (e —1)dN;

dvy = [k(a ) — EQ_”)\} dt+ o(s,)dWay + JydN,

Wit and Wy, are standard Brownian motions with correlation p. Ny is a Poisson process with intensity A.

Note: that the model includes jumps in both returns and volatility. Let 7, ,, = E(e”1* — 1) and iy, = E(J2:) denote

the mean jump sizes.
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Shortcomings in existing models — part 2
Existing work almost always uses affine models:
o Closed form option pricing formulas
e But, do these models fit the data?
Note: Again, one can add in as many different jumps and/or risk premia as you want, basic problem remains...
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Model — discussion

Suppose that one wanted to think about extensions of this model with potential to explain variation in shape

of implied volatility surface:

e Stochastic volatility of volatility
e Stochastic leverage effect (correlation in return and volatility innovations)

e Time-varying jump dynamics

— affects shape of return distributions, but primarily at short horizons

e Additional volatility factor

— primarily affects term structure

We focus on stochastic volatility of volatility and leverage effect.
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Model — proposed extension

Given a probability space (2, F,P) and information filtration {7}, the ex-dividend stock price, x;, is assumed to

evolve as
Ly = [u — ;TU,/\l]dt + exp(v;/2)dWi; + (e — 1)dNy,
dvy = [k@ ) — ﬂmA]]dt + 0(50)dWoa, + Jad Ny
ds; = (1 — 2s,)dNy;
where

e v, and s; are the volatility state and the regime state, respectively (the regime state is either 0 or 1).
e Wy, and Wy, are standard Brownian motions with regime-dependent correlation p(s;).

e Ny, and Ny, are Poisson processes with intensity Ay and Aa(s;), respectively.

Notes:
e The model allows for regime-switching in volatility of volatility and leverage effect.
© Regime dependence of Az lets regimes differ in persistence.

e Could also allow for regime switching in jump dynamics (we looked at such models but did not find them to be

useful... ).

o Still only include single volatility factor. Make no effort to capture term structure effects.
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Why regime switching?

e Regime switching is the simplest possible framework allowing for variation in parameters of interest.
e |t also turns out to be sufficient to capture features of interest ....

e We are not arguing that this should be taken too literally. Could also look at models with continuous state

spaces. But,...
— would have to fully specify dynamics, interactions, and risk-premia

— analysis is less transparent
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Model — log returns (physical)

It is often useful to transform the model into log prices, y; = log(z).

Under the P-measure

1
dy, = [/1 — Ty A — 3 exp(’ut)} dt + exp(v,/2)dWyy + J14:dNyy
v = [k(T = 1) = Ty dt + o(5)dWar + JpdNog

ds, = (1 — 2s;)dNy.

where everything else is as before.
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Model — log returns (risk-neutral)

Under the Q-measure,

1 ) S
dy, = [Tt —q — Ty — 5 cxp(vt)] dt + exp(v/2)dWE + JEANE
dvy = [k(r —vg) = ns)ve — ﬁmw dt + o(s,) AW + J2ANS
ds; = (1 —2s,)dNg

where 7, and ¢; denote the risk-free rate and the dividend rate, respectively.
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Model — Jump forms

Unscaled jump model (UJ): jump innovations are identically distributed across time,

Jig~ N (HlJﬂ%,/)
Jop ~ N (HQJ- 0;,1)

corr(Jig, Jor) = pg-
(This form has been commonly used in the existing literature.)
Scaled jump model (SJ): jumps scale in proportion to the volatility of the diffusion component of the process.

Jue/ exp(ve/2) ~ N (g, 015)
Jat/o(st) ~ N (MJ, 0;,1>

corr(Jyg, Jor) = pJ-

By generating larger jumps when volatility is higher, the SJ model is potentially capable of providing more

realistic dynamics.
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Model — discussion of risk-premia
e Bias between risk neutral and physical volatility. Can be be explained by
— volatility risk premium, or

— jump risk premium.

e In order to disentangle these requires information about
— Term structure (of volatility), or

— Shape of return distributions.

o \We make no attempt to separately identify jump risk premium and volatility risk premium.
— Account for bias by volatility risk premium. Absorbs potential jump risk premium.

— See Pan (JFE, 2002) for additional details...

Note: But we do allow for different risk premia depending on regime state.
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Study design — continued
Step 2:
e Use nonlinear filter to back out implied regime states.

o Regress option-implied skewness and kurtosis on states (and some control variables) to see if the models
have explanatory power

— i.e., do changes in characteristics of physical dynamics help explain changes in shape of implied
volatility smile.

Note: This is a meaningful diagnostic since skewness/kurtosis are not used in estimation...
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Study design
Data:
e Use daily observations of SPX index and option prices.
e Compute daily time-series for
— option-implied volatility
— option-implied skewness
— option-implied kurtosis
Step 1:
e Fit models using only information from returns and implied volatility
— Maximum likelihood estimation
— Volatility state backed out from option-implied volatility
— Implied skewness and kurtosis are withheld from estimation
e Model comparisons (likelihood-based)
e Look at diagnostics to assess model fit (based on idea of generalized residuals).
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Questions

A few totally random questions which | have never seen before taken from workshop participants chosen entirely
at random...
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Question 1

You have all these great option price data which are hugely informative about skewness/kurtosis. Why don’t you
use them in fitting the $#&!!@ model?
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Question 1 — discussion

e Given observations on e.g. implied volatility and implied skewness:
— Essentially any two-factor model can fit both exactly on a day-by-day basis.

— Even if the model is badly misspecified.

e But unclear if implied dynamics are actually present under physical model or just artifacts of forcing the
model to fit the shape of the implied volatility smile.

o Differences between risk-neutral and physical measures are typically attributed to risk premia.

e But, if the model is misspecified, the risk premia “discovered” in this way will also be just artifacts.
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Question 1 — discussion (continued)

To illustrate:

Suppose (purely hypothetically) that time-variation in the shape of return distributions is due to stochastic

leverage effect.

But, now suppose that we used observations of option-implied volatility and skewness to fit (incorrectly)

a model with time-varying jump dynamics (say, jump intensity) but not leverage effect.

One would find that the model could perfectly match the observed values of option-implied volatility and

skewness. (If the only tool you have is a hammer, everything looks like a nail...).

One would find:

— Strong evidence of time-varying jump intensity in the risk-neutral measure.
— But, no evidence of time-varying jump intensity in the physical measure.

So the effect would be attributed entirely to time-varying risk premia.

The exercise would

— generate results that are false

— errors that are difficult to diagnose.
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Question 1 — discussion (continued)

Our approach is to withhold information on option-implied skewness when fitting the model (step 1).

We can then test whether forecasts from our models are consistent with what is observed (step 2).
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Question 2

Do you do the standard sort of option pricing exercise? Do your models lead to improved option pricing perfor-

mance?
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Question 2 — discussion

We do not make any effort to demonstrate potential improvements in fitting observed option prices.

e To do this, one would want to use the full panel of observed option prices to back out implied states.
e Model can fit, e.g., both implied volatility and skewness on a day-by-day basis.
e Fit to option prices improves correspondingly.

e But, this is not the point of this paper...
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Summary of results — part 1

e Including jumps in returns and volatility is important (as is already known).

e But, allowing for time-variation (regime switching) in stochastic volatility of volatility and leverage effect

are also important.

e The best model includes regime-switching in both.
— improvement in log likelihood is around 118 points relative to model without regime switching.
— likelihood ratio test indicates a p-value of around 1074, (Typically considered to be significant...).

— other diagnostics are also improved.
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Summary of results — part 2

o Regressions show strong evidence of explanatory power.

e Best model includes states from both regime-switching in volatility of volatility and leverage effect.

— Slope coefficients are large and in expected directions (high volatility of volatility and strong
leverage effect are each associated with more skewed and leptokurtotic return distributions under

risk-neutral measure).

Vol of vol and leverage effect states each provide independent sources of information.
— R?is over 32% (compared to 9% for control variables alone).
— t-statistics are greater than 11 (in absolute value), corresponding to p-values of around 10727,

— Results are both economically and statistically significant.
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Conclusions

e We do indeed find evidence of characteristics associated with time-varying shape of returns distribution

under physical measure.

e These characteristics do have strong explanatory power for time-varying shape of returns under risk-neutral

measure.

e We can reject the idea that time-variation in shape of Black-Scholes implied volatility smile is due entirely
to changes in risk-premia.
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Directions for future work

e Reverse process: is information in shape under risk-neutral measure useful for understanding dynamics under

physical measure?
e Fit option prices using full information.

e Multi-factor models to fit term-structure and slope/curvature of smile.

— Need at least three states to capture basic features.

Notes:
o All of this using log volatility (or CEV) models (since affine models don't fit data).

e Mixture of normals rather than jumps?
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Details

e Option-implied volatility, skewness and kurtosis

e Backing out volatility state

e Backing out regime state

o Maximum-likelihood estimation

e Model comparison (likelihood-based)
o Generalized residuals

e Diagnostics

o Regressions
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Option-implied volatility, skewness and kurtosis

e Given a panel of option-prices across moneyness (with fixed time to maturity) it should be possible to extract

the full risk-neutral return density (matching time to maturity).

o We use approach of Bakshi, Kapadia and Madan (2003) to compute option-implied volatility, skewness and

kurtosis for log returns.

E.g., for volatility:

V(t,T) = /: 20 =108/ oy 1 iy are

KZ
+ /nS 2(1 — log(K/$)) I(I’fz(K/S))P(z.T;K) dK

e Use linear interpolation based on two closest times to maturity greater than 8 days to get constant

30-day maturity series.
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Backing out volatility

Given a model, candidate parameter vector (risk-neutral), regime state, and observed option-implied volatility

we need to back out the volatility state.

This is a simple scalar mapping. Just need to evaluate the mapping at a few points and use standard techniques

for functional approximation (curve fitting).

Procedure

e Let EVI., AN 5\7(; be a grid of possible values for spot volatility.

e For each, compute IT/I AAAAA I/V?;, the corresponding value for implied volatility (at 30 days under risk

neutral measure). Use brute force Monte Carlo.

e Now, we have a collection of pairs {(IV, SV, ((,’:1 It is just a matter of fitting a curve.

Notes:
e Many possible curve-fitting/interpolation schemes are possible. We find a simple global (cubic) polynomial scheme
to work well.
e That there are two possible sources of approximation error. One should check that both are negligible (they are).
— Monte Carlo error

— interpolation error
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Figure — IV to SV mapping
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Backing out regime state

Given an observed value of IV;, we now have two possible values for SV; (and v;), one for each regime state.

Need to compute

Pt = p(se = j|Fe) = plog = vl |F), j=12
where v] denotes the volatility state corresponding to regime j.

Filter can be constructed recursively using standard techniques.

Procedure

o Let p, = (p),p}) foreacht=0,...,n.
o Initialize by setting p{ equal to the marginal probability of state j (j = 0,1).
e Now, suppose that p, is known. The problem is to compute p;+1. This is given by (for j = 0,1)

o P, v |y vl s =0) - p(sesr = s = i) - pi
=1 T : - -
Zk:o 21:0 P(?/t+177";'+1‘i’/z~ v, 8¢ =1) - p(si41 = ks = 1) - p}

Piia

Note: Sometimes speak of filtered regime state: the expected value of s; conditional on information available at time ¢,

Si=Ei(s))=p;-0+pi 1=p;.
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Maximum likelihood estimation

e Having backed out volatility states and computed filtered regime state probabilities, computing the log
likelihood is straightforward:

n—1 1 1
log L({ye}ia ATV} icis 0) 2 30D [lomymv:+.\w:‘5n =) +logp(sea = jlse = i)
t=1 i=0 j=0 (1)

+logp(s: =) + logJ,ﬁr]] s
where J/, | = d'(,v{H/dIVHl‘ is the Jacobian corresponding to regime state j.
e Parameter estimates are obtained by numerical optimization,

0 = argmaxlog L({y iy, {TVi} o3 6).

We use a BHHH optimizer, but the criterion function is well-behaved and nearly any optimizer will work

fine.




No regime switching RV model RL model RVL model

sV sJ uJ SJRV__UJRV_SIRL UJRL  SIRVL UJ-RVL

ux 10" 469 370  3.08 303 207 342 308 3.00 2.08
(127)  (1.28) (1.25) (1.25)  (1.25) (1.26)  (1.23) (1.25)  (L.25)

£x10° 429 600  6.69 634 1107 748 736 627 1104
(129) (135) (133) (1.32)  (1.28) (1.35)  (1.34) (132)  (1.28)

T 971 -10.03 -9.70 1006 -9.63 1000 -9.80 998 -9.63
(055) (038) (0.36) (0.32)  (0.20) (0.32)  (0.33) (0.33)  (0.20)

7 x10° 301 284 384 286 418 249 272 3.01 4.20
(0.25)  (036) (035) (0.42)  (0.36) (0.47)  (0.44) (0.37)  (0.36)

7' x 103 297 2.46 339 4.27 2.66 2.46
(0.59)  (0.41) (0.40)  (0.38) (054)  (0.42)

¥ x 100 132 0.91 123 0.84 118 0.99 1.25 0.85 118
(0.02) (0.03) (0.03) (0.03)  (0.03) (0.03)  (0.03) (0.03)  (0.03)

o' x 10" 133 212 133 212
(0.06)  (0.06) (0.05)  (0.06)

i -074 -078 -0.82 -081  -091 -053  -061 -0.77 -0.91
(0.01) (0.01) (0.01) (0.01) (0.01) (0.04)  (0.03) (0.01)  (0.01)

o 082 085 087 -0.91
(0.01)  (0.01) (0.02)  (0.01)

Py 071 -053 070 -0.05 077 072 069 -0.04
(0.03)  (0.04) (0.03) (0.10) (0.03)  (0.04) (0.03)  (0.10)

A 047 033 055 1.8 030 015 0.46 1.08
(0.06)  (0.04) (0.09)  (0.14) (0.04)  (0.02) (0.07)  (0.15)

g x 102 113 005 452 008 -11.90  -0.05 378 0.08
(6.59)  (0.04) (6.38)  (0.02) (8.78)  (0.07) (6.98)  (0.02)

a1y x 101 1294 0.06 1244 0.03 1342 008 1230 0.03
(0.75)  (0.00) (0.77)  (0.00) (0.85)  (0.01) (0.77)  (0.00)

piz2s % 101 279 024 339 009 350 044 3.04 0.08
(0.69)  (0.07) (0.66)  (0.04) (0.95)  (0.13) (0.70)  (0.04)

o2 154 015 115 005 172 021 1.25 0.05
(0.07)  (0.01) (0.07)  (0.01) (0.09)  (0.01) (0.07)  (0.01)

™0 098 098 097 096 099 098
(0.01)  (0.01) (0.01)  (0.01) (0.00)  (0.01)

™ 094 094 099 098 0.96 0.94
(0.01) (0.01) (0.00) (0.01) (0.01)  (0.01)
log(L) 38491 38851 38810 38961 38960 38,883 38,858 38,969 38,960
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Remarks

e Jumps are important (about 360 points in log likelihood).
e SJ better than UJ (about 40 points in log likelihood)

e Regime switching is also important
— volatility in volatility is better than leverage effect
— best model includes both features

— improvement of around 118 points in log likelihood relative to non-regime switching model
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Model comparison
e To the extent that models are nested, can use likelihood ratio tests.
E.g., best regime-switching model rejects non-regime-switching counterpart with a p-value of around 1045

e Alternatively, one could use information criteria (AIC, BIC, etc). Results are sufficiently clearcut that
it doesn't make much difference which ...
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Diagnostics — generalized residuals

e Let {z}}, be a sequence of random vectors where z; has distribution Gy(z|F;_1).

Let uy = Gy(%|Fi-1) (t=1,...,n).

If the model is correctly specified, {u;} should be iid uniform(0, 1).

The hypothesis that {G;(z;|F;—1;6)} is the true data generating process for {; } can be tested by performing

diagnostics on {u}.

But, it is often more useful to instead perform diagnostics on
Uy = D (uy), t=1,...,n (2)

where @ is the standard normal distribution function.

In this case, the transformed residuals {u;} should be iid standard normal under the hypothesis of correct

model specification.

Note: We will always use the transformed residuals in this paper.
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Generalized residuals — continued

e For the models in this paper, the generalized residuals are computed in a manner similar to the log likelihood
(equation (1)),

11
Uty = ZZP(yM. Vi [ye vy se = 1) - p(sepr = jlse = 1) - pj,

i=0 j=0

where P(-) denotes a cdf.
e These residuals correspond to the joint distribution of price and volatility innovations.

o Although one could certainly study these, we have found it more useful to study marginal residuals

corresponding to price and volatility innovations separately,

1
Uy,t+1 = Z P(yiy1lye, vi, 56 = 1) - p(se = 1)
i=0

11
Up,t41 = ZZP(Q]H\!IHU;}& =1) - p(ses1 = jlse =) - p(sy = 0).
i=0 j=0
e Testing can proceed using standard time series techniques:
— Normality (QQ-plots, Jarque-Bera tests)

— Independence (correlograms, Ljung-box tests)

Return residuals (SV)

Return residuals (SJ)
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Table — Diagnostics

Jarque-Bera Test

49
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Explanatory power for option-implied skewness and kurtosis

Look at following regressions:

SKEW,; = By + Brv3RY + BrusRE + Buix log VIX; + BvrpVRP, + Byy log IV, + &
KURT; = By + BrvéRY + BrusRE + Buix log VIX; + BvrpVRP; + Byy log JV; + ¢¢

where

5}V denotes the filtered state under the models with regime switching in volatility of volatility.

§RL denotes the filtered state under the models with regime switching in leverage effect.

VIX; is the VIX index, which serves as a proxy for the volatility state.

VRP; is the variance risk premium

JV, is past one-month jump variation, which proxies for jump risk.

Notes:

e Recall that we do not use the information from observed option-implied skewness and kurtosis when fitting the

models (back out regime states using only returns and volatility.

e This allows to test whether the implied states have explanatory power for option-implied skewness and kurtosis.

No regime switching RV model RL model RVL model
SV SJ uJ SJRV  UJRV SJRL  UJRL SJ-RVL UJ-RVL
Return 445 20 113 245 10 50 19 246
(0.000) (0.000) (0.000) (0.000)  (0.000) (0.006) (0.000) (0.000)  (0.000)
Volatility 2,367 22 121 318 8 30 15 320
(0.000) (0.000) (0.000) (0.000)  (0.000) (0.018)  (0.000) (0.001)  (0.000)
Ljung-Box Test (with 20 lags)
No regime switching RV model RL model RVL model
SV SJ uJ SRV UJRV SJ-RL  UJ-RL SJ-RVL  UJ-RVL
Return 43 41 41 40 41 40 41 40
(0.002) (0.004) (0.004) (0.004) (0.005) (0.004) (0.005) (0.004)  (0.005)
Volatility 116 118 116 100 115 114 116 100
(0.000) (0.000) (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000)
Squared Vol. 419 552 424 74 559 446 118 74
(0.000) (0.000) (0.000) (0.000)  (0.000) (0.000)  (0.000) (0.000)  (0.000)
51
Table — skewness regressions
Constant BN B log VIX, VRP, log JV, Adj. R?
coeff  t-stat coeff  t-stat coeff  t-stat coeff  t-stat coeff  t-stat coeff  t-stat
Control variables only
278 (-16.43) 037  (6.53) 7.6%
338 (-12.02) 060 (5.94) 2010 (-3.21) 9.2%
275 (-13.84) 036  (4.97) 0.000 (-0.32) 7.6%
356 (-9.34) 067  (4.65) 011 (-337) 0.001  (0.74) 9.3%
Control variables plus filtered states from SJ models
282 (-18.07) 056 (-9.02) 044 (8.48) 16.2%
363 (-1457)  -0.61 (-9.98) 074 (8.42) 013 (-5.01) 19.0%
276 (-16.78) 057 (-9.06) 041 (7.29) -0.001 (-1.10) 16.3%
380 (-1212)  -0.61 (-9.92) 081 (7.00) 014 (-5.07) 0.001  (1.00) 19.1%
282 (-1539) 062 (-7.37) 054 (7.15) 17.5%
325 (-12.37) 060 (-7.17) 069 (7.10) 007 (-2.23) 18.3%
273 (-11.68) 063 (-8.12) 050 (5.11) -0.001  (-0.80) 17.7%
322 (-8.26) -0.60 (-7.89) 068  (4.43) 007 (-2.03) 0.000 (-0.11) 18.3%
287 (-1805)  -0.71 (-1153)  -0.76 (-10.66) 065 (10.36) 30.6%
352 (-1628)  -0.74 (-12.04)  -0.74 (-10.77) 089 (11.23)  -0.10 (-4.02) 32.3%
273 (-1490)  -0.72 (-1155)  -0.78 (-11.90) 059 (8.15) 20.002  (-1.89) 31.1%
344 (-1121)  -0.74 (-11.96)  -0.74 (-11.69) 086 (7.28) 010 (-359)  -0.001 (-0.39) 32.3%

52
Skewness regressions — remarks

o Control variables have some explanatory power, but together only achieve an R? of 9.3%.

SJ models always outperform UJ models.

Volatility of volatility does slightly better than leverage effect (R? of 19% and 18.3% respectively).

Slope coefficients are large and in expected direction.

Best model includes both states, with an 1% of over 32% (leverage state and vol of vol state each provide

independent sources of information.

Slope coefficients are around -0.7 with ¢-statistics of over 11 (in absolute value), corresponding to p-values
of around 10~27.

Results are economically and statistically significant.




Regressions — kurtosis

Results for kurtosis are weaker but qualitatively similar.
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Conclusions

We have

e Demonstrated some tools and techniques.

o Obtained some results.

Lots more that can be done ...




