Beyond stochastic volatility and jumps in returns and volatility

Garland Durham and Yangho Park Leeds School of Business University of Colorado

Background — continued

- Physical measure: Daily prices on the underlying typically involve several thousand observations. Sufficient to fit a basic model with
 - shape of returns distribution (conditional on volatility)
 - time-varying volatility
 - possibly other features
- Risk-neutral measure: Options provide far more information. A typical data set may involve hundreds of thousands of option prices.
 - options with varying moneyness provide information on shape of returns distribution
 - options with varying $\boldsymbol{time}\ \boldsymbol{to}\ \boldsymbol{maturity}$ provide information on expectations at $\boldsymbol{various}\ \boldsymbol{horizons}$

Fitting these requires the model to have time-varying features to fit

- implied variance, skewness, kurtosis, ...
- at various horizons
- on a daily basis (not just on average).

Background

- Given a financial asset ("stock"), we observe
 - the price of the asset, and
 - prices of **options** on it (various times to maturity and moneyness)
- We would like to have models that describes these data:
 - physical measure describes asset price dynamics
 - risk neutral measure describes option prices
- · Given physical and risk-neutral models
 - we should be able to learn something about risk premia by looking at differences between them.

Background — continued

3

While this seems like a fairly straightforward problem, it turns out to be difficult.

- The fundamental problem here is one that many people would like to have:
 - We have too much data!
 - Easy to invalidate almost any model you might imagine.
- Also, option prices provide only **indirect** information about states.
 - Models are written in terms of one-day ahead densities, but options are at multi-day horizons.
 - Need to invert risk-neutral measure.

The goals are:

- Find models that combine the information from these two sources
- Assess the extent to which the dynamics implied by option prices are consistent with the dynamics of the underlying asset price.

Background — continued

Our research agenda is directed toward addressing these problems.

- We have developed a good collection of tools and techniques, and accumulated lots of results.
- Are now beginning to write some of this up.
- The paper of interest here is a part of this broad agenda.

Background — continued

5

Modelling framework typically uses affine-jump models with a single volatility factor.

Issues:

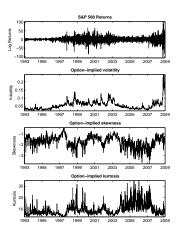
- Only one factor (volatility).
 - Can fit option-implied volatility at a single horizon.
 - Cannot fit option-implied skewness, kurtosis ... at any horizons.
- Jump specification is too restrictive to fit shapes of distributions
 - Mixtures of normals?
- Affine model does not fit the data. Adding jumps doesn't fit the problem.
 - But give easy option-pricing formulae...
- How to get good approximations to true continuous-time model (theoretical basis)
 - How good is the **Euler scheme** approximation?
 - How much **better** can we do at reasonable computational cost (cpu and programmer)?

This paper...

• Financial asset returns are well-known to exhibit stochastic volatility

- But, there is also strong evidence in favor of time-varying shape in return distributions (at least under the risk-neutral measure):
 - skewness
 - kurtosis
- This can be seen from variation across time in shape of Black-Scholes implied volatility smiles.

6



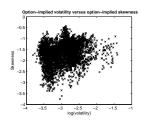
11

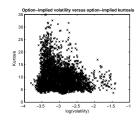
Goals

Address the following issues:

- Is there also evidence of time-varying shape of return distributions under the physical measure?
- How should we **model** the factor(s) responsible for time-varying skewness?
- Does time-variation in shape of physical measure have **explanatory power** for variation in risk-neutral measure?
 - Or, alternatively, is variation in risk-neutral measure due largely (or entirely) to changes in risk premia?
 (e.g., due to supply and demand for options, independent of expectations for dynamics of underlying.)
- Develop techniques to analyze multi-factor, non-affine models
 - fit
 - assess

Note: This paper is part of a long-term research agenda designed to address related issues.





Shortcomings in existing models — part 1

Existing models used to fit physical and risk-neutral measures simultaneously typically include only a **single state variable**, volatility.

- Given value of state variable, **everything** about volatility surface is known:
 - Level
 - Slope
 - Curvature
 - Term structure
- But, empirically, changes in these features are not perfectly correlated.
- Compare this to models of **term structure** of interest rates, which typically include at least **three states** (level, slope, curvature).

Note: Can add in as many different jumps and/or risk premia as you want, basic problem remains...

Shortcomings in existing models — part 2

Existing work almost always uses affine models:

- · Closed form option pricing formulas
- But, do these models fit the data?

Note: Again, one can add in as many different jumps and/or risk premia as you want, basic problem remains...

Model — discussion

Suppose that one wanted to think about extensions of this model with potential to explain variation in shape of implied volatility surface:

- Stochastic volatility of volatility
- Stochastic leverage effect (correlation in return and volatility innovations)
- Time-varying jump dynamics
 - affects shape of return distributions, but primarily at short horizons
- Additional volatility factor
 - primarily affects term structure

We focus on stochastic volatility of volatility and leverage effect.

Model — starting point

13

15

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and information filtration $\{\mathcal{F}_t\}$, the ex-dividend stock price, x_t , is assumed to evolve as

$$dx_t/x_t = \left[\mu - \overline{\mu}_{1Jt}\lambda\right]dt + \exp(v_t/2)dW_{1t} + (e^{J_{1t}} - 1)dN_t$$
$$dv_t = \left[k(\overline{v} - v_t) - \overline{\mu}_{2Jt}\lambda\right]dt + \sigma(s_t)dW_{2t} + J_{2t}dN_t$$

 W_{1t} and W_{2t} are standard Brownian motions with correlation ρ . N_t is a Poisson process with intensity λ .

Note: that the model includes jumps in both returns and volatility. Let $\overline{\mu}_{1Jt}=E(e^{J_{1t}}-1)$ and $\overline{\mu}_{2Jt}=E(J_{2t})$ denote the mean jump sizes.

Model — proposed extension

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and information filtration $\{\mathcal{F}_t\}$, the ex-dividend stock price, x_t , is assumed to evolve as

$$dx_t/x_t = \left[\mu - \overline{\mu}_{1Jt}\lambda_1\right]dt + \exp(v_t/2)dW_{1t} + (e^{J_{1t}} - 1)dN_{1t}$$

 $dv_t = \left[k(\overline{v} - v_t) - \overline{\mu}_{2Jt}\lambda_1\right]dt + \sigma(s_t)dW_{2t} + J_{2t}dN_{1t}$
 $ds_t = (1 - 2s_t)dN_{2t}$

where

- v_t and s_t are the volatility state and the regime state, respectively (the regime state is either 0 or 1).
- W_{1t} and W_{2t} are standard Brownian motions with regime-dependent correlation $\rho(s_t)$.
- ullet N_{1t} and N_{2t} are Poisson processes with intensity λ_1 and $\lambda_2(s_t)$, respectively.

- The model allows for regime-switching in volatility of volatility and leverage effect.
- Regime dependence of λ₂ lets regimes differ in persistence.
- Could also allow for regime switching in jump dynamics (we looked at such models but did not find them to be
- Still only include single volatility factor. Make no effort to capture term structure effects.

14

Why regime switching?

- Regime switching is the simplest possible framework allowing for variation in parameters of interest.
- It also turns out to be sufficient to capture features of interest
- We are not arguing that this should be taken too literally. Could also look at models with continuous state
 - would have to fully specify dynamics, interactions, and risk-premia
 - analysis is less transparent

Model — log returns (risk-neutral)

Under the Q-measure,

$$dy_t = \left[r_t - q_t - \overline{\mu}_{1Jt}\lambda_1 - \frac{1}{2}\exp(v_t)\right]dt + \exp(v_t/2)dW_{1t}^{\mathbb{Q}} + J_{1t}^{\mathbb{Q}}dN_{1t}^{\mathbb{Q}}$$

$$dv_t = \left[k(\overline{v} - v_t) - \eta(s_t)v_t - \overline{\mu}_{2Jt}\lambda_1\right]dt + \sigma(s_t)dW_{2t}^{\mathbb{Q}} + J_{2t}^{\mathbb{Q}}dN_{1t}^{\mathbb{Q}}$$

$$ds_t = (1 - 2s_t)dN_{2t}^{\mathbb{Q}}$$

where r_t and q_t denote the risk-free rate and the dividend rate, respectively.

17

19

Model — log returns (physical)

It is often useful to transform the model into log prices, $y_t = \log(x_t)$.

Under the P-measure

$$dy_t = \left[\mu - \overline{\mu}_{1Jt}\lambda_1 - \frac{1}{2}\exp(v_t)\right]dt + \exp(v_t/2)dW_{1t} + J_{1t}dN_{1t}$$

$$dv_t = \left[k(\overline{v} - v_t) - \overline{\mu}_{2Jt}\lambda_1\right]dt + \sigma(s_t)dW_{2t} + J_{2t}dN_{1t}$$

$$ds_t = (1 - 2s_t)dN_{2t}.$$

where everything else is as before.

Model — Jump forms

Unscaled jump model (UJ): jump innovations are identically distributed across time,

$$\begin{split} J_{1t} \sim N\left(\mu_{1J}, \sigma_{1J}^2\right) \\ J_{2t} \sim N\left(\mu_{2J}, \sigma_{2J}^2\right) \\ \text{corr}(J_{1t}, J_{2t}) = \rho_J. \end{split}$$

(This form has been commonly used in the existing literature.)

Scaled jump model (SJ): jumps scale in proportion to the volatility of the diffusion component of the process.

$$\begin{split} J_{1t}/\exp(v_t/2) &\sim N\left(\mu_{1J}, \sigma_{1J}^2\right) \\ J_{2t}/\sigma(s_t) &\sim N\left(\mu_{2J}, \sigma_{2J}^2\right) \\ \mathrm{corr}(J_{1t}, J_{2t}) &= \rho_J. \end{split}$$

By generating larger jumps when volatility is higher, the SJ model is potentially capable of providing more realistic dynamics.

18

Model — discussion of risk-premia

- Bias between risk neutral and physical volatility. Can be be explained by
 - volatility risk premium, or
 - jump risk premium.
- In order to disentangle these requires information about
 - Term structure (of volatility), or
 - Shape of return distributions.
- We make no attempt to separately identify jump risk premium and volatility risk premium.
 - Account for bias by volatility risk premium. Absorbs potential jump risk premium
 - See Pan (JFE, 2002) for additional details...

Note: But we do allow for different risk premia depending on regime state.

Study design — continued

Step 2:

- Use nonlinear filter to back out implied regime states.
- Regress option-implied skewness and kurtosis on states (and some control variables) to see if the models have explanatory power
 - i.e., do changes in characteristics of physical dynamics help explain changes in shape of implied volatility smile.

Note: This is a meaningful diagnostic since skewness/kurtosis are not used in estimation...

21

23

Study design

Data:

- Use daily observations of SPX index and option prices.
- Compute daily time-series for
 - option-implied volatility
 - option-implied skewness
 - option-implied kurtosis

Step 1:

- Fit models using only information from returns and implied volatility
 - Maximum likelihood estimation
 - Volatility state backed out from option-implied volatility
 - Implied skewness and kurtosis are withheld from estimation
- Model comparisons (likelihood-based)
- Look at diagnostics to assess model fit (based on idea of generalized residuals).

Questions

A few **totally random** questions which I have **never seen** before taken from workshop participants chosen entirely at **random**...

24

You have all these great option price data which are hugely informative about skewness/kurtosis. Why don't you use them in fitting the \$#&!!@ model?

Question 1 — discussion (continued)

To illustrate:

- Suppose (purely hypothetically) that time-variation in the shape of return distributions is due to stochastic leverage effect.
- But, now suppose that we used observations of option-implied volatility and skewness to fit (incorrectly) a model with time-varying jump dynamics (say, jump intensity) but not leverage effect.
- One would find that the model could perfectly match the observed values of option-implied volatility and skewness. (If the only tool you have is a hammer, everything looks like a nail...).
- One would find:
 - Strong evidence of time-varying jump intensity in the risk-neutral measure.
 - But, no evidence of time-varying jump intensity in the physical measure.

So the effect would be attributed entirely to time-varying risk premia.

- · The exercise would
 - generate results that are false
 - errors that are difficult to diagnose.

25

27

Question 1 — discussion

- Given observations on e.g. implied volatility and implied skewness:
 - Essentially any two-factor model can fit both exactly on a day-by-day basis.
 - Even if the model is badly misspecified.
- But unclear if implied dynamics are actually present under physical model or just artifacts of forcing the model to fit the shape of the implied volatility smile.
- Differences between risk-neutral and physical measures are typically attributed to risk premia.
- But, if the model is **misspecified**, the risk premia "discovered" in this way will also be just artifacts.

Question 1 — discussion (continued)

Our approach is to withhold information on option-implied skewness when fitting the model (step 1).

We can then test whether forecasts from our models are consistent with what is observed (step 2).

26

Ougstion	ຸາ

Do you do the standard sort of option pricing exercise? Do your models lead to improved option pricing perfor-

Summary of results — part 1

• Including jumps in returns and volatility is important (as is already known).

- But, allowing for time-variation (regime switching) in stochastic volatility of volatility and leverage effect are also important.
- The best model includes regime-switching in both.
 - improvement in log likelihood is around 118 points relative to model without regime switching.
 - likelihood ratio test indicates a p-value of around 10^{-48} . (Typically considered to be significant...).
 - other diagnostics are also improved.

29

31

Question 2 — discussion

We do not make any effort to demonstrate potential improvements in fitting observed option prices.

- To do this, one would want to use the full panel of observed option prices to back out implied states.
- Model can fit, e.g., both implied volatility and skewness on a day-by-day basis.
- Fit to option prices improves correspondingly.
- But, this is not the point of this paper...

Summary of results — part 2

• Regressions show strong evidence of explanatory power.

- Best model includes states from both regime-switching in volatility of volatility and leverage effect.
 - Slope coefficients are large and in expected directions (high volatility of volatility and strong leverage effect are each associated with more skewed and leptokurtotic return distributions under risk-neutral measure).
 - Vol of vol and leverage effect states each provide **independent** sources of information.
 - $-R^2$ is **over 32%** (compared to 9% for control variables alone).
 - t-statistics are greater than 11 (in absolute value), corresponding to p-values of around 10^{-27} .
 - Results are both economically and statistically significant.

30

Conclusions

• We do indeed find evidence of characteristics associated with time-varying shape of returns distribution under **physical measure**.

These characteristics do have strong explanatory power for time-varying shape of returns under risk-neutral
measure.

• We can **reject** the idea that time-variation in shape of Black-Scholes implied volatility smile is due entirely to **changes in risk-premia**.

Details

· Option-implied volatility, skewness and kurtosis

· Backing out volatility state

• Backing out regime state

• Maximum-likelihood estimation

• Model comparison (likelihood-based)

• Generalized residuals

Diagnostics

• Regressions

33

35

Directions for future work

 Reverse process: is information in shape under risk-neutral measure useful for understanding dynamics under physical measure?

• Fit option prices using full information.

• Multi-factor models to fit term-structure and slope/curvature of smile.

- Need at least three states to capture basic features.

Notes:

• All of this using log volatility (or CEV) models (since affine models don't fit data).

• Mixture of normals rather than jumps?

Option-implied volatility, skewness and kurtosis

Given a panel of option-prices across moneyness (with fixed time to maturity) it should be possible to extract
the full risk-neutral return density (matching time to maturity).

• We use approach of Bakshi, Kapadia and Madan (2003) to compute option-implied volatility, skewness and kurtosis for log returns.

E.g., for volatility:

$$V(t,T) = \int_{S}^{\infty} \frac{2(1 - \log(K/S))}{K^2} C(t,T;K) dK + \int_{0}^{S} \frac{2(1 - \log(K/S))}{K^2} P(t,T;K) dK$$

• Use **linear interpolation** based on two closest times to maturity greater than 8 days to get **constant** 30-day maturity series.

36

Backing out volatility

Given a model, candidate parameter vector (risk-neutral), regime state, and **observed option-implied volatility** we need to **back out the volatility state**.

37

39

This is a simple **scalar mapping**. Just need to evaluate the mapping at a few points and use standard techniques for **functional approximation** (curve fitting).

Procedure

- Let $\widehat{SV}_1, \dots, \widehat{SV}_G$ be a grid of possible values for spot volatility.
- For each, compute $\widehat{IV}_1,\ldots,\widehat{IV}_G$, the corresponding value for **implied volatility** (at 30 days under risk neutral measure). Use **brute force** Monte Carlo.
- Now, we have a collection of pairs $\{(IV_g, SV_g\}_{g=1}^G$. It is just a matter of fitting a curve.

Notes:

- Many possible curve-fitting/interpolation schemes are possible. We find a simple global (cubic) polynomial scheme
 to work well
- That there are two possible sources of approximation error. One should check that both are negligible (they are).
 - Monte Carlo error
 - interpolation error

Backing out regime state

Given an observed value of IV_t , we now have **two possible values** for SV_t (and v_t), one for each regime state.

Need to compute

$$p_t^j = p(s_t = j | \mathcal{F}_t) = p(v_t = v_t^j | \mathcal{F}_t), \quad j = 1, 2$$

where v_{*}^{j} denotes the volatility state corresponding to regime j.

Filter can be constructed recursively using standard techniques.

Procedure

- Let $p_t = (p_t^0, p_t^1)'$ for each t = 0, ..., n.
- Initialize by setting p_0^j equal to the marginal probability of state j (j = 0, 1).
- Now, suppose that p_t is known. The problem is to compute p_{t+1} . This is given by (for j=0,1)

$$p_{t+1}^j = \frac{\sum_{i=0}^1 p(y_{t+1}, v_{t+1}^j | y_t, v_t^i, s_t = i) \cdot p(s_{t+1} = j | s_t = i) \cdot p_t^i}{\sum_{k=0}^1 \sum_{i=0}^1 p(y_{t+1}, v_{t+1}^k | y_t, v_t^i, s_t = i) \cdot p(s_{t+1} = k | s_t = i) \cdot p_t^i}$$

Note: Sometimes speak of filtered regime state: the expected value of s_t conditional on information available at time t,

$$\hat{s}_t = E_t(s_t) = p_t^0 \cdot 0 + p_t^1 \cdot 1 = p_t^1$$

Figure — IV to SV mapping

40

38

Maximum likelihood estimation

 Having backed out volatility states and computed filtered regime state probabilities, computing the log likelihood is straightforward:

$$\log L(\{y_t\}_{t=1}^n, \{IV_t\}_{t=1}^n; \theta) \approx \sum_{t=1}^{n-1} \sum_{i=0}^1 \sum_{j=0}^1 \left[\log p(y_{t+1}, v_{t+1}^j | y_t, v_t^i, s_t = i) + \log p(s_{t+1} = j | s_t = i) + \log p(s_{t+1} = j | s_t = i) + \log p(s_{t+1} = j | s_t = i) \right]$$

$$+ \log p(s_t = i) + \log J_{t+1}^j,$$

$$(1)$$

where $J_{t+1}^j = \left| dv_{t+1}^j / dIV_{t+1} \right|$ is the Jacobian corresponding to regime state j

· Parameter estimates are obtained by numerical optimization,

$$\widehat{\theta} = \arg\max\log L(\{y_t\}_{t=1}^n, \{IV_t\}_{t=1}^n; \theta).$$

We use a BHHH optimizer, but the criterion function is well-behaved and nearly any optimizer will work fine.

	No re	gime swit	tching	RV r	nodel	F	L model	RVL	model
	SV	SJ	UJ	SJ-RV	UJ-RV	SJ-F	SJ-RL UJ-RL		UJ-RVL
$\mu \times 10^4$	4.69	3.70	3.08	3.03	2.07	3.4	2 3.08	3.00	2.08
	(1.27)	(1.28)	(1.25)	(1.25)	(1.25)	(1.2	5) (1.23)	(1.25)	(1.25)
$\kappa \times 10^3$	4.29	6.00	6.69	6.34	11.07	7.4	8 7.36	6.27	11.04
	(1.29)	(1.35)	(1.33)	(1.32)	(1.28)	(1.3	5) (1.34)	(1.32)	(1.28)
\overline{v}	-9.71	-10.03	-9.70	-10.06	-9.63	-10.0	9.80	-9.98	-9.63
	(0.55)	(0.38)	(0.36)	(0.32)	(0.20)	(0.3	2) (0.33)	(0.33)	(0.20)
$\eta^0 \times 10^3$	3.01	2.84	3.84	2.86	4.18	2.4	9 2.72	3.01	4.20
	(0.25)	(0.36)	(0.35)	(0.42)	(0.36)	(0.4	7) (0.44)	(0.37)	(0.36)
$\eta^1 \times 10^3$				2.97	2.46	3.3	9 4.27	2.66	2.46
				(0.59)	(0.41)	(0.4	0.38)	(0.54)	(0.42)
$\sigma^0 \times 10^1$	1.32	0.91	1.23	0.84	1.18	0.9	9 1.25	0.85	1.18
	(0.02)	(0.03)	(0.03)	(0.03)	(0.03)	(0.0	3) (0.03)	(0.03)	(0.03)
$\sigma^1 \times 10^1$				1.33	2.12			1.33	2.12
				(0.06)	(0.06)			(0.05)	(0.06)
ρ^0	-0.74	-0.78	-0.82	-0.81	-0.91	-0.5	3 -0.61	-0.77	-0.91
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.0	4) (0.03)	(0.01)	(0.01)
ρ^1						-0.8	2 -0.85	-0.87	-0.91
						(0.0	1) (0.01)	(0.02)	(0.01)
ρ_J		-0.71	-0.53	-0.70	-0.05	-0.7	7 -0.72	-0.69	-0.04
		(0.03)	(0.04)	(0.03)	(0.10)	(0.0	3) (0.04)	(0.03)	(0.10)
λ		0.47	0.33	0.55	1.08	0.3	0.15	0.46	1.08
		(0.06)	(0.04)	(0.09)	(0.14)	(0.0	4) (0.02)	(0.07)	(0.15)
$\mu_{1J} \times 10^2$		-1.13	0.05	-4.52	0.08	-11.9	90 -0.05	-3.78	0.08
		(6.59)	(0.04)	(6.38)	(0.02)	(8.7	8) (0.07)	(6.98)	(0.02)
$\sigma_{1J}\times 10^1$		12.94	0.06	12.44	0.03	13.4	2 0.08	12.30	0.03
		(0.75)	(0.00)	(0.77)	(0.00)	(0.8	5) (0.01)	(0.77)	(0.00)
$\mu_{2J} \times 10^1$		2.79	0.24	3.39	0.09	3.5	9 0.44	3.04	0.08
		(0.69)	(0.07)	(0.66)	(0.04)	(0.9	5) (0.13)	(0.70)	(0.04)
σ_{2J}		1.54	0.15	1.15	0.05	1.7	2 0.21	1.25	0.05
		(0.07)	(0.01)	(0.07)	(0.01)	(0.0	9) (0.01)	(0.07)	(0.01)
π_0				0.98	0.98	0.9	7 0.96	0.99	0.98
				(0.01)	(0.01)	(0.0	1) (0.01)	(0.00)	(0.01)
π_1				0.94	0.94	0.9	9 0.98	0.96	0.94
				(0.01)	(0.01)	(0.0	0) (0.01)	(0.01)	(0.01)
log(L)	38,491	38,851	38,810	38,961	38,960	38,8	38,858	38,969	38,960

Model comparison

ullet To the extent that models are nested, can use **likelihood ratio** tests. E.g., best regime-switching model rejects non-regime-switching counterpart with a p-value of around 10^{-48} .

• Alternatively, one could use **information criteria (AIC, BIC**, etc). Results are **sufficiently clearcut** that it doesn't make much difference which ...

Remarks

• Jumps are important (about 360 points in log likelihood).

• SJ better than UJ (about 40 points in log likelihood)

· Regime switching is also important

- volatility in volatility is better than leverage effect

- best model includes both features

- improvement of around ${f 118}$ points in log likelihood relative to non-regime switching model

43

44

42

Diagnostics — generalized residuals

• Let $\{z_t\}_{t=1}^n$ be a sequence of random vectors where z_t has distribution $G_t(z|\mathcal{F}_{t-1})$.

• Let $u_t = G_t(z_t|\mathcal{F}_{t-1})$ $(t = 1, \dots, n)$.

 \bullet If the model is correctly specified, $\{u_t\}$ should be iid $\mathsf{uniform}(0,1).$

• The hypothesis that $\{G_t(z_t|\mathcal{F}_{t-1};\theta)\}$ is the true data generating process for $\{z_t\}$ can be tested by performing diagnostics on $\{u_t\}$.

• But, it is often more useful to instead perform diagnostics on

$$\tilde{u}_t = \Phi^{-1}(u_t), \quad t = 1, \dots, n$$
 (2)

where Φ is the standard normal distribution function.

ullet In this case, the transformed residuals $\{\widetilde{u}_t\}$ should be iid standard normal under the hypothesis of correct model specification.

Note: We will always use the transformed residuals in this paper.

Generalized residuals — continued

• For the models in this paper, the generalized residuals are computed in a manner similar to the log likelihood (equation (1)),

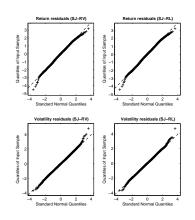
$$u_{t+1} = \sum_{i=0}^{1} \sum_{j=0}^{1} P(y_{t+1}, v_{t+1}^{j} | y_{t}, v_{t}^{i}, s_{t} = i) \cdot p(s_{t+1} = j | s_{t} = i) \cdot p_{t}^{i},$$

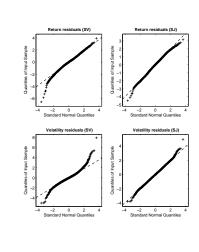
where $P(\cdot)$ denotes a cdf.

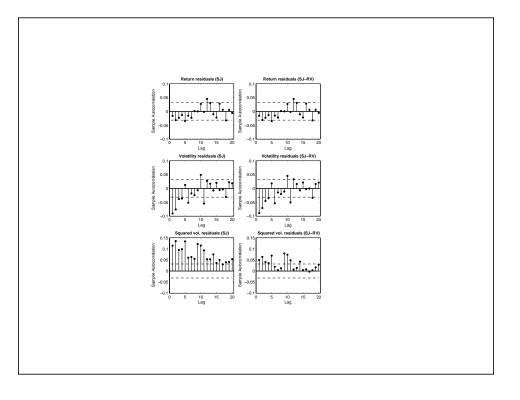
- These residuals correspond to the **joint distribution** of price and volatility innovations.
- Although one could certainly study these, we have found it more useful to study marginal residuals
 corresponding to price and volatility innovations separately,

$$\begin{split} u_{y,t+1} &= \sum_{i=0}^{1} P(y_{t+1}|y_t, v_t^i, s_t = i) \cdot p(s_t = i) \\ u_{v,t+1} &= \sum_{i=0}^{1} \sum_{j=0}^{1} P(v_{t+1}^j|y_t, v_t^i, s_t = i) \cdot p(s_{t+1} = j|s_t = i) \cdot p(s_t = i). \end{split}$$

- Testing can proceed using standard time series techniques:
 - Normality (QQ-plots, Jarque-Bera tests)
 - Independence (correlograms, Ljung-box tests)







51

Table — Diagnostics

Jarque-Bera Test

	No re	No regime switching			nodel	RL n	R	RVL model		
	SV	SJ	UJ	SJ-RV	UJ-RV	SJ-RL	UJ-RL	SJ-R'	VL	UJ-RVL
Return	445	20	113	17	245	10	50	19		246
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.006)	(0.000)	(0.00	0)	(0.000)
Volatility	2,367	22	121	20	318	8	30	15		320
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.018)	(0.000)	(0.00	1)	(0.000)

Ljung-Box Test (with 20 lags)

	No regime switching			RV r	nodel	RL n	nodel	RVL model		
	SV	SJ	UJ	SJ-RV	UJ-RV	SJ-RL	UJ-RL	SJ-RVL	UJ-RVL	
Return	43	41	41	41	40	41	40	41	40	
	(0.002)	(0.004)	(0.004)	(0.004)	(0.005)	(0.004)	(0.005)	(0.004)	(0.005)	
Volatility	116	118	116	115	100	115	114	116	100	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
Squared Vol.	419	552	424	128	74	559	446	118	74	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	

Table — skewness regressions

Co	nstant		\hat{s}_t^{RV}		\hat{s}_t^{RL}	log	VIX_t	V	VRP_t		JV_t	Adj. R^2
coeff	t-stat	coeff	t-stat	coeff	t-stat	coeff	t-stat	coeff	t-stat	coeff	t-stat	
	Control variables only											
-2.78	(-16.43)					0.37	(6.53)					7.6%
-3.38	(-12.02)					0.60	(5.94)	-0.10	(-3.21)			9.2%
-2.75	(-13.84)					0.36	(4.97)			0.000	(-0.32)	7.6%
-3.56	(-9.34)					0.67	(4.65)	-0.11	(-3.37)	0.001	(0.74)	9.3%
				Control v	ariables pli	us filtered	states fro	m SJ mo	dels			
-2.82	(-18.07)	-0.56	(-9.02)			0.44	(8.48)					16.2%
-3.63	(-14.57)	-0.61	(-9.98)			0.74	(8.42)	-0.13	(-5.01)			19.0%
-2.76	(-16.78)	-0.57	(-9.06)			0.41	(7.29)			-0.001	(-1.10)	16.3%
-3.80	(-12.12)	-0.61	(-9.92)			0.81	(7.00)	-0.14	(-5.07)	0.001	(1.00)	19.1%
-2.82	(-15.39)			-0.62	(-7.37)	0.54	(7.15)					17.5%
-3.25	(-12.37)			-0.60	(-7.17)	0.69	(7.10)	-0.07	(-2.23)			18.3%
-2.73	(-11.68)			-0.63	(-8.12)	0.50	(5.11)			-0.001	(-0.80)	17.7%
-3.22	(-8.26)			-0.60	(-7.89)	0.68	(4.43)	-0.07	(-2.03)	0.000	(-0.11)	18.3%
-2.87	(-18.05)	-0.71	(-11.53)	-0.76	(-10.66)	0.65	(10.36)					30.6%
-3.52	(-16.28)	-0.74	(-12.04)	-0.74	(-10.77)	0.89	(11.23)	-0.10	(-4.02)			32.3%
-2.73	(-14.90)	-0.72	(-11.55)	-0.78	(-11.90)	0.59	(8.15)			-0.002	(-1.89)	31.1%
-3.44	(-11.21)	-0.74	(-11.96)	-0.74	(-11.69)	0.86	(7.28)	-0.10	(-3.59)	-0.001	(-0.39)	32.3%

Explanatory power for option-implied skewness and kurtosis

Look at following regressions:

$$\begin{aligned} \mathsf{SKEW}_t &= \beta_0 + \beta_{\mathsf{RV}} \hat{s}_t^{\mathsf{RV}} + \beta_{\mathsf{RL}} \hat{s}_t^{\mathsf{RL}} + \beta_{\mathsf{VIX}} \log \mathsf{VIX}_t + \beta_{\mathsf{VRP}} \mathsf{VRP}_t + \beta_{\mathsf{JV}} \log \mathsf{JV}_t + \varepsilon_t \\ \mathsf{KURT}_t &= \beta_0 + \beta_{\mathsf{RV}} \hat{s}_t^{\mathsf{RV}} + \beta_{\mathsf{RL}} \hat{s}_t^{\mathsf{RL}} + \beta_{\mathsf{VIX}} \log \mathsf{VIX}_t + \beta_{\mathsf{VRP}} \mathsf{VRP}_t + \beta_{\mathsf{JV}} \log \mathsf{JV}_t + \varepsilon_t \end{aligned}$$

where

- \hat{s}_t^{RV} denotes the filtered state under the models with regime switching in volatility of volatility.
- $\hat{s}_t^{\rm RL}$ denotes the filtered state under the models with regime switching in leverage effect.
- ullet VIX $_t$ is the VIX index, which serves as a proxy for the volatility state.
- ullet VRP $_t$ is the variance risk premium
- JV_t is past one-month jump variation, which proxies for jump risk.

Notes:

- Recall that we do not use the information from observed option-implied skewness and kurtosis when fitting the models (back out regime states using only returns and volatility.
- This allows to test whether the implied states have explanatory power for option-implied skewness and kurtosis.

Skewness regressions — remarks

- Control variables have some explanatory power, but together only achieve an \mathbb{R}^2 of 9.3%.
- SJ models always outperform UJ models.
- Volatility of volatility does slightly better than leverage effect (R^2 of 19% and 18.3% respectively).
- Slope coefficients are large and in expected direction.
- ullet Best model includes **both states**, with an R^2 of over 32% (leverage state and vol of vol state each provide independent sources of information.
- ullet Slope coefficients are around -0.7 with t-statistics of over 11 (in absolute value), corresponding to p-values of around 10^{-27} .
- Results are economically and statistically significant.

52

Regressions	— kurtosis	53
	osis are weaker but qualitatively similar.	
results for Ruft	and the means of quantitively similar.	

Conclusions 54

We have

• Demonstrated some tools and techniques.

• Obtained some results.

Lots more that can be done ...